PHYS 142/242 Lecture 10: Eigenvalue Problem

Javier Duarte – January 29, 2025

Midterm preview

- In the midterm, we will numerically solve for the two lowest energy eigenvalues of the double well
- We will sketch the method today with the HO

TABLE I. Eigenvalues of the two-well oscillator in the small- λ regime. $\epsilon_n(\lambda)$ are the computed exact eigenvalues of the energy-shifted operator $H(1, \lambda) + (1/4\lambda)$, which is positive definite.

λ	$\epsilon_0 \\ \epsilon_1$	ϵ_2 ϵ_3
0.01	1.404 048 605 297 7 ^a 1.404 048 605 297 7	4.170 193 605 999 3 4.170 193 605 999 3
0.02	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.092 028 112 820 5 4.092 028 608 428 7
0.03	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.006 049 199 465 7 4.006 655 466 749 5
0.04	1.371 122 236 557 5 1.371 308 461 612 9	3.901 359 951 813 1 3.918 263 337 997 1
0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.746 917 080 727 9 3.848 838 300 057 4
0.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.342 216 720 258 7 3.833 129 937 607 9
0.10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.033 667 276 570 6 4.589 838 495 543 4
0.17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.118 337 642 119 7 4.816 923 221 196 9
0.20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.270 \ 377 \ 801 \ 715 \ 3$ $5.148 \ 274 \ 740 \ 096 \ 0$

^a Since near the minima the potential function $\sim 2x^2 + O(\lambda^{1/2}x^3)$, $\epsilon_0 \rightarrow \sqrt{2}$ (ground-state energy in a potential $2x^2$) as $\lambda \rightarrow 0$. We find $\epsilon_0(\lambda = 0.001) = 1.413211965792$.

We want to solve the following eigenvalue equation

$$\hat{H}\phi_n(x) = -\frac{1}{2}\frac{\partial^2 \phi_n(x)}{\partial x^2} + V(x)\phi_n(x)$$

where $V(x) = \frac{1}{2}x^2$

We will discretize the problem as usual

 $= E_n \phi_n(x)$

Discrete Hamiltonian

 $N_D + 1$ and the Hamiltonian is an $(N_D + 1) \times (N_D + 1)$ matrix

$$\sum_{j} H_{ij} \phi_n^j = E_n \phi_n^i$$

What does H_{ii} look like?

The potential part is diagonal $\frac{1}{2}x_i^2\phi_n^i = \frac{1}{2}x_i^2\delta_{ij}\phi_n^j \subset H_{ij}\phi_n^j$

What about the kinetic part?

In the discrete case, the wave function ϕ_n is a vector $\phi_n^i = \phi_n(x_i)$ of length

as

The second derivative (or Laplacian operator) on a grid can be approximated

What if
$$N_D = 4$$
? Then $\Delta x = 2$. Let's
 $H_{00} = -\frac{1}{2(2^2)}(-2) + \frac{1}{2}(-4)^2 = \frac{1}{4}$

Filling out the rest, we have

$$H = \begin{pmatrix} 8.25 & -0.125 & 0\\ -0.125 & 2.25 & -0.125\\ 0 & -0.125 & 0.25\\ 0 & 0 & -0.125\\ 0 & 0 & 0 \end{pmatrix}$$

calculate the first entry

-+8 = 8.25

$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ -0.125 & 0 \\ 2.25 & 0.125 \\ -0.125 & 8.25 \end{array}$

What if $N_D = 8?$

The Hamiltonian matrix is sparse with a band structure!

ARPACK

See: <u>https://docs.scipy.org/doc/scipy/tutorial/arpack.html</u>

ARPACK [1] is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large sparse matrices.

It requires only left-multiplication by the matrix in question performed through a reverse-communication interface. ARPACK is able to find eigenvalues and eigenvectors of any linear function mapping a vector to a vector (i.e. "matrix-free")

Rather than storing the matrix directly, when a matrix operation is required it returns control to the calling program with a flag indicating what operation is required

Two high-level interfaces: scipy.sparse.linalg.eigs (real or complex nonsymmetric square matrices) and scipy.sparse.linalg.eigsh (real-symmetric or complexhermitian matrices)

[1] <u>https://github.com/opencollab/arpack-ng</u>

Functionality

ARPACK can solve eigenvalue problems of the form

 $A\mathbf{v} = \lambda \mathbf{v}$

where A is an $n \times n$ matrix that has n linearly independent eigenvalues corresponding eigenvectors v_1, \ldots, v_n

The power of ARPACK is that it only computes a specified subset of eigenvalue/eigenvector pairs through the keyword which

which = 'LM' : Eigenvalues with largest magnitude λ

which = 'SM' : Eigenvalues with smallest magnitude $|\lambda|$

- $\lambda_1, \ldots, \lambda_n$, rank them by their magnitude $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$, and the

Power method: iteration 1

Let's see how we can solve just the largest magnitude eigenvalues with the power method The eigenvectors are a basis, so we can write any vector \boldsymbol{u}_0 as a linear combination of them

 $u_0 = c_1 v_1 + c_2 v_2 + \dots + c_n v_n, \ c_1 \neq 0$

Multiply both sides by A

$$A\boldsymbol{u}_{0} = c_{1}A\boldsymbol{v}_{1} + c_{2}A\boldsymbol{v}_{2} + \dots + c_{n}A\boldsymbol{v}_{n}$$
$$= c_{1}\lambda_{1}\boldsymbol{v}_{1} + c_{2}\lambda_{2}\boldsymbol{v}_{2} + \dots + c_{n}\lambda_{n}\boldsymbol{v}_{n}$$
$$= c_{1}\lambda_{1}\left(\boldsymbol{v}_{1} + \frac{c_{2}\lambda_{2}}{c_{1}\lambda_{1}}\boldsymbol{v}_{2} + \dots + \frac{c_{n}\lambda_{n}}{c_{1}\lambda_{1}}\boldsymbol{v}_{n}\right)$$

where we have defined $\boldsymbol{u}_1 \equiv \boldsymbol{v}_1 + \frac{c_2 \lambda_2}{c_1 \lambda_1} \boldsymbol{v}_2 + \dots + \frac{c_n \lambda_n}{c_1 \lambda_1} \boldsymbol{v}_n$

$$\equiv c_1 \lambda_1 \boldsymbol{u}_1$$

Power method: iteration 2

Power method: iteration k

Multiply
$$\boldsymbol{u}_{k-1}$$
 by A
 $A\boldsymbol{u}_{k-1} = \lambda_1 \left(\boldsymbol{v}_1 + \frac{c_2 \lambda_2^k}{c_1 \lambda_1^k} \boldsymbol{v}_2 + \dots + \frac{c_n}{c_1} \right)$

that $\boldsymbol{u}_k \approx \boldsymbol{u}_{k-1} \approx \boldsymbol{v}_1$

 $\frac{c_n \lambda_n^k}{c_1 \lambda_1^k} \boldsymbol{v}_n = \lambda_1 \boldsymbol{u}_k$

Eventually, as we increase k, the ratio $\left(\frac{\lambda_n}{\lambda_1}\right)^k \ll 1$ is sufficiently small so

Shift-invert mode

ARPACK is better at finding eigenvalues with large magnitudes. So, using which = 'SM' may lead to slow execution time and/or anomalous results. A better approach is to use *shift-invert mode*.

We can rewrite the eigenvalue problem by subtracting σv from both sides $(A - \sigma I)\mathbf{v} = (\lambda - \sigma)\mathbf{v}$

Multiplying both sides the inverse matrix $(A - \sigma I)^{-1}$ and dividing both sides by the constant $\lambda - \sigma$, we find

$$(A - \sigma I)^{-1} \mathbf{v} = \left(\frac{1}{\lambda - \sigma}\right) \mathbf{v}$$

which correspond to the smallest eigenvalues of A, i.e. λ

If we set $\sigma = 0$, we can solve for the largest eigenvalues of A^{-1} , i.e. $1/\lambda$,

Demo

https://jduarte.physics.ucsd.edu/phys142/lectures/ 10_EigenvalueProblemDemo.html

