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PHYS 142/242
Lecture 10: Eigenvalue Problem



Midterm preview
• In the midterm, we will numerically solve for the two lowest energy 

eigenvalues of the double well


• We will sketch the method today with the HO
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&p —1 normalization the determinants up to any
even order may be obtained successively from the
recursion (3); for odd orders the initial conditions
are bo —0, 6& —1. The zeros of &„(E)are ob-
tained numerically by Newton's method which re-
quires both 6 (E) and &'(E); the latter is obtained
by differentiating the recursion (3) with respect to
E and computing recursively. Both the recursions
are numerically stable and the zeros of 4~(E)
stabilize for large m to the required eigenvalues. '
The eigenvalues obtained by Newton's method were
checked and in the process upper and lower bound-
ed by computing a sufficiently large-order deter-
minant 6„(E)from the recursion (3) for two neigh-
boring E values. Opposite signs of &u(E) for the
neighboring E values indicates that an eigenvalue
lies in between. The appropriate value of the
scaling parameter n is & in the (small n, small
A) regime since in this regime the eigenvalue spec-
trum may be understood as the splitting of nearly
harmonic levels. The lowest four eigenvalues of
H(1, X) for various values of A, are given in Table
I. All significant figures quoted are claimed to
be accurate. Eigenvalues of such accuracy are
computed for the first time in this work.
Eigenvalues in any regime of values of (n, X),

the corresponding eigenfunctions and the trans-
ition moments~ of high accuracy may be obtained

by this method. The results will be reported in
due course.

III. WKB APPROXIMATION

For any symmetrical two-well oscillator let
E„bean energy level in one of the wells assuming
no tunneling. Then for a smaIl probability of tun-
neling the splitting of this level in the %KB approx-
imation is given by'

(4)

where +x(} and +x, are the four classical turning
points. Expressing the above integrals in closed
forms in terms of the elliptic integrals" we obtain
from Eq. (4) the WKB formula

a'"[2(1+u)]'"
fc(q)

W2 u'~'
&& exp (1+u)'~2[E(t}—ujf'(t}] ~,3 i

(5)

where t=[(l —u)/(1+u)]' ', q =[2u/(1+u)]' ', u
=[4&~'„(&)]''/k, e'„(k)= E'„+(k'/4X), K(s) and E(s)

TABLE I. Eigenvalues of the two-well oscillator in the small-X regime. &„(A)are the com-
puted exact eigenvalues of the energy-shifted operator H(1, X) + (1/4X), which is positive def-
inite.
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0.01

0.02

0.03

0.04

0.05

0.07

0.10

0.15

0.17

0.20

1.404
1.404
1.393
1.393
1.382
1.382
1.371
1.371
1.358
1.360
1.323
1.343
1.234
1.346
1.062
1.421
1.007
1.464
0.941
1.535

048 605
048 605
527 585
527 587
601 444
605 783
122 236
308 461
422 103
133 597
374 074
365 616
507 162
940 868
499 247
086 890
165 158
225 132
750 342
530 204

297 7
297 7
044 2
151 0
053 8
831 4
557 5
612 9
747 8
773 3
208 5
287 4
786 0
922 5
956 5
539 3
778 7
421 2
076 9
085 8

4.170 193 605 999 3
4.170 193 605 999 3
4.092 028 112 820 5
4.092 028 608 428 7
4.006 049 199 465 7
4.006 655 466 749 5
3.901 359 951 813 1
3.918 263 337 997 1
3.746 917 080 727 9
3.848 838 300 057 4
3.342 216 720 258 7
3.833 129 937 607 9
3.009 488 545 436 2
4.043 546 039 767 6
3.033 667 276 570 6
4.589 838 495 543 4
3.118 337 642 119 7
4.816 923 221 196 9
3.270 377 801 715 3
5.148 274 740 096 0

Since near the minima the potentail function 2x + O(A. x ), cp W2 {ground-state energy
in a potential 2x ) as A, G. We find &p(A, = 0.001)=1.413211965792.



Numerical solution
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We want to solve the following eigenvalue equation





where 


We will discretize the problem as usual 

Ĥϕn(x) = −
1
2

∂2ϕn(x)
∂x2

+ V(x)ϕn(x) = Enϕn(x)

V(x) =
1
2

x2

x0 x1

Δx

xND−1 xND

−4 +4



Discrete Hamiltonian
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In the discrete case, the wave function  is a vector  of length 
 and the Hamiltonian is an  matrix





What does  look like?


The potential part is diagonal 


What about the kinetic part?

ϕn ϕi
n = ϕn(xi)

ND + 1 (ND + 1) × (ND + 1)

∑
j

Hijϕ
j
n = Enϕi

n

Hij

1
2

x2
i ϕi

n =
1
2

x2
i δijϕ

j
n ⊂ Hijϕ

j
n



Numerical solution
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The second derivative (or Laplacian operator) on a grid can be approximated 
as





So 

∂2ϕn

∂x2
⟶

( ϕi+1 − ϕi

Δx ) − ( ϕi − ϕi−1

Δx )
Δx

=
ϕi+1 − 2ϕi + ϕi−1

Δx2

Hij = −
1

2Δx2 (δi+1,j − 2δij + δi−1,j) +
1
2

x2
i δij



Numerical solution
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What if ? Then . Let’s calculate the first entry





Filling out the rest, we have


ND = 4 Δx = 2

H00 = −
1

2(22)
(−2) +

1
2

(−4)2 =
1
4

+ 8 = 8.25

H =

8.25 −0.125 0 0 0
−0.125 2.25 −0.125 0 0

0 −0.125 0.25 −0.125 0
0 0 −0.125 2.25 0.125
0 0 0 −0.125 8.25



Numerical solution
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What if ?
ND = 8

H =

9 −0.5 0 0 0 0 0 0 0
−0.5 5.5 −0.5 0 0 0 0 0 0

0 −0.5 3 −0.5 0 0 0 0 0
0 0 −0.5 1.5 −0.5 0 0 0 0
0 0 0 −0.5 1 −0.5 0 0 0
0 0 0 0 −0.5 1.5 −0.5 0 0
0 0 0 0 0 −0.5 3 −0.5 0
0 0 0 0 0 0 −0.5 5.5 −0.5
0 0 0 0 0 0 0 −0.5 9

The Hamiltonian matrix is sparse with a band structure!



ARPACK
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See: https://docs.scipy.org/doc/scipy/tutorial/arpack.html


ARPACK [1] is a Fortran package which provides routines for quickly finding a few 
eigenvalues/eigenvectors of large sparse matrices. 


It requires only left-multiplication by the matrix in question performed through 
a reverse-communication interface. ARPACK is able to find eigenvalues and 
eigenvectors of any linear function mapping a vector to a vector (i.e. “matrix-free”)


Rather than storing the matrix directly, when a matrix operation is required it 
returns control to the calling program with a flag indicating what operation is 
required


Two high-level interfaces: scipy.sparse.linalg.eigs (real or complex nonsymmetric 
square matrices) and scipy.sparse.linalg.eigsh (real-symmetric or complex-
hermitian matrices)


[1] https://github.com/opencollab/arpack-ng

https://docs.scipy.org/doc/scipy/tutorial/arpack.html
https://github.com/opencollab/arpack-ng


Functionality
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ARPACK can solve eigenvalue problems of the form





where  is an  matrix that has  linearly independent eigenvalues 
, rank them by their magnitude , and the 

corresponding eigenvectors 


The power of ARPACK is that it only computes a specified subset of 
eigenvalue/eigenvector pairs through the keyword which


which = 'LM' : Eigenvalues with largest magnitude 


which = 'SM' : Eigenvalues with smallest magnitude 

Av = λv

A n × n n
λ1, …, λn |λ1 | > |λ2 | > … > |λn |

v1, …, vn

|λ |

|λ |



Power method: iteration 1
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Let’s see how we can solve just the largest magnitude eigenvalues with the power method 


The eigenvectors are a basis, so we can write any vector  as a linear combination of them





Multiply both sides by 





where we have defined 

u0

u0 = c1v1 + c2v2 + ⋯ + cnvn, c1 ≠ 0

A
Au0 = c1Av1 + c2Av2 + ⋯ + cnAvn

= c1λ1v1 + c2λ2v2 + ⋯ + cnλnvn

= c1λ1 (v1 +
c2λ2

c1λ1
v2 + ⋯ +

cnλn

c1λ1
vn) ≡ c1λ1u1

u1 ≡ v1 +
c2λ2

c1λ1
v2 + ⋯ +

cnλn

c1λ1
vn



Power method: iteration 2
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Multiply  by 





where we have defined 

u1 A

Au1 = Av1 +
c2λ2

c1λ1
Av2 + ⋯ +

cnλn

c1λ1
Avn

= λ1v1 +
c2λ2

2

c1λ1
v2 + ⋯ +

cnλ2
n

c1λ1
vn

= λ1 (v1 +
c2λ2

2

c1λ2
1

v2 + ⋯ +
cnλ2

n

c1λ2
1

vn) ≡ λ1u2

u2 ≡ v1 +
c2λ2

2

c1λ2
1

v2 + ⋯ +
cnλ2

n

c1λ2
1

vn



Power method: iteration k
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Multiply  by 





Eventually, as we increase , the ratio  is sufficiently small so 

that  

uk−1 A

Auk−1 = λ1 (v1 +
c2λk

2

c1λk
1

v2 + ⋯ +
cnλk

n

c1λk
1

vn) ≡ λ1uk

k ( λn

λ1 )
k

≪ 1

uk ≈ uk−1 ≈ v1



Shift-invert mode
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ARPACK is better at finding eigenvalues with large magnitudes. So, 
using which = 'SM' may lead to slow execution time and/or anomalous 
results. A better approach is to use shift-invert mode.


We can rewrite the eigenvalue problem by subtracting  from both sides 



Multiplying both sides the inverse matrix  and dividing both sides 
by the constant , we find 





If we set , we can solve for the largest eigenvalues of , i.e. , 
which correspond to the smallest eigenvalues of , i.e. 

σv
(A − σI)v = (λ − σ)v

(A − σI)−1

λ − σ

(A − σI)−1v = ( 1
λ − σ ) v

σ = 0 A−1 1/λ
A λ



Demo
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https://jduarte.physics.ucsd.edu/phys142/lectures/
10_EigenvalueProblemDemo.html


https://jduarte.physics.ucsd.edu/phys142/lectures/10_EigenvalueProblemDemo.html
https://jduarte.physics.ucsd.edu/phys142/lectures/10_EigenvalueProblemDemo.html

