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Statistical Mechanics Recap

 Our goal today is to recap some statistical mechanics basics

* Next time, we will also show an intriguing connection between the path
iIntegral and statistical mechanics involving “imaginary time”



Canonical ensemble

o Statistical mechanics deals with large systems that may be in one or another
state with different probabilities associated with each

 Usually we’re interested not in the probabillity to go to just one specified final
state, but rather the chance to end up in any one of a set of such states

 For example, states in a canonical ensemble corresponding to thermal
equilibrium at some temperature 1
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Probabilities

The probability p, that a system is in a state of energy £, is

n J

where kg is the Boltzmann constant measures the temperature in natural energy
units kg = 1.38 X 107 J/K



Canonical partition function

The partition function

7 — Z o —Ei/(ksT)
n

normalizes all the probabilities

1

Pn=E€

1
Often convenient to define f = 1/(kgT) so Z = 2 e PEvand p, = Ee_ﬂEn
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Helmholtz free energy

An equivalent normalization consists of defining an energy F
7Z=ePF
so that the probabilities can be written

pn — e_ﬁ(En_F)

F = — kgT In Z is the Helmholtz free energy



Observables

To find the expected values of some observable A, we simply apply the
standard rules of probabillities

(A) = 2 Ay = ) A oD



Energy

For example, the expected energy

U=(E)= ; Ene_ﬁ(En_F) = %Z Ene_ﬁEn

1 az aan
This can be writtenas U = — ——
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Entropy

Entropy S = — kg Z p,, Inp,, which measures the disorder

n

This is also related to the Helmholtz free energy F' = — kg1 In Z
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Partition function and other quantities

It can be shown that all the standard thermodynamic quantities, internal energy

U, entropy S, pressure P, etc., can be evaluated if the partition function Z is
Known

These quantities are obtained by differentiating Z or equivalently the Helmholtz
free energy F
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Quantum statistical systems?

For quantum systems, there are two kinds of uncertainty: (1) uncertainty about
exactly which state the system is in, and (2) even once the exact state is known,
an intrinsic guantum uncertainty

For example, if we wanted to know the position of a quantum electron, the
probability of observing it at x would be given by

1
PO = ), $r),(x)e "

n

Any general quantity A would then be

W)= 3 | #reoag,we i = Trap)

n
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Density matrix

The (unnormalized) density matrix is thus defined as

P x) = ) (P (x)e 5
We see that

/ = Jﬁ(x, xX)dx = Tr(p) = 2 e PE

n

Note: in most textbooks, we usually call the p(x', x) = p(x’, x)/Z the proper
normalized density matrix
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Relation to path integral

This formulation bears a striking resemblance to the path integral

K, £;x.0) = ) ¢, (x)px)e TWE 1> 0

whose trace gives the spectrum

Tr(K) = Z o —(INE,

n=1

If we set t — — iffh, the two are formally identical

This Is called Wick rotation or analytic continuation to imaginary time
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Underlying connection

Path integral formulation of quantum mechanics is related to statistical
mechanics

From statistical mechanics, the shape of each spring in a collection at

temperature 1 will deviate from the least-energy shape due to thermal
fluctuations; the probability of finding a spring with a given shape decreases
exponentially with the energy difference from the least-energy shape

Similarly, a quantum particle moving in a potential can be described by a

superposition of paths, each with a phase e'>: the thermal variations in the
shape across the collection have turned into quantum uncertainty in the path
of the quantum particle.
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Example: 1D classical electron Iin heat bath

For a 1D electron in contact with a heat bath at constant temperature 7, the
energy Is given by

1
E(x,v) = Emv2 + V(x)

So the classical phase space is 2D (velocity and position)

To get the partition function, we have to integrate over this 2D phase space,

/ = Jdvdxe —PEY)

and probabilities are given by p(x,v) = Ee—ﬁE(X»V)
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Example: Quantum HO in heat bath

Quantum HO interacts with environment (heat y
bath) at constant temperature 1 | F, YR
>
£y
7 X

£
Can picture it as exchange of photons , iH%f
Ve

7 — Z o —PE, f WE;
n
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Example: 2D Ising model

Set of lattice sites /A, usually a square grid

At each site, there is a discrete variable
o, € {—1, + 1}, representing the site’s spin

A spin configuration 6 = {0, }, A

For any two adjacent sites, (ij) there is a spin
Interaction J and at every site there may be
- )i -

i Q) ho
(i) J

Simplification: J = J;; > Oand i, = 0

an external fleld h
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Example: 2D Ising model

With 150 x 150 lattice, 222°% possible states!

High T Low T
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