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Canonical ensemble
In the canonical ensemble, the probability  that the system is in a state of 
energy  is


,


where  is the Boltzmann constant and 


 


is the partition function. 


Convenient to define “inverse temperature” 

pn
En

pn =
1
Z

e−En/(kBT)

kB = 1.38 × 10−23 J/K

Z = ∑
n

e−En/(kBT)

β = 1/(kBT)
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Coin-flipping game
Suppose we have a coin which can be heads (H) or 
tails (T)


At each step, we flip the coin, producing a new state 
(H or T). This generates a sequence like 
"HTTHTHTTHH..."


Visualize the process with a state diagram


Circles represent the possible states


Arrows indicate the possible states that the system 
could transition to (with corresponding probabilities)


Transition probabilities coming out of each state 
must sum up to one
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Biased coin
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Suppose the coin is biased to be more likely to land on the side it landed on 
before


State diagram looks like this. The probability of flipping a subsequent H or T is





which we can write using the transition matrix 

p′ H = P(H |H)pH + P(H |T)pT

p′ T = P(T |H)pH + P(T |T)pT

[p′ H

p′ T] = [P(H |H) P(H |T)
P(T |H) P(T |T)] [pH

pT] = [0.52 0.49
0.48 0.51] [pH

pT]



Stationary state
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After a large number of steps, the states 
probabilities might converge to a "stationary" 
distribution , such that they no longer 
change significantly on subsequent steps. 


The stationary probabilities must satisfy





Note, this is an eigenvalue equation, with 
eigenvalue = 1!

(πH, πT)

[πH
πT] = [P(H |H) P(H |T)

P(T |H) P(T |T)] [πH
πT]



Markov process and chain
A Markov process is a set of probabilistic rules that tell us how to choose a 
new state of the system, based only on the system's current state. If the system 
is currently in state  then the probability of choosing state  on the next step is 
given by the “transition probability” . 


By repeatedly applying the Markov process, we move the system through a 
random sequence of states,   where  denotes the state 
on step  .


This random sequence is called a Markov chain.


Because the system must transition to some state, 


n m
P(m |n)

{n(0), n(1), n(2), …} n(k)

k

∑
m

P(m |n) = 1 for all n ∈ {0,1,…} .
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Markov process and chain
The probability to be found in state  at step  depends only on step 





or in terms of the transition matrix,





The vector of stationary probabilities   is an eigenvector of the transition 
matrix, with eigenvalue 1.


We will use Markov processes to model thermodynamic systems, such that a stationary 
distribution represents the distribution of thermodynamic microstates in thermal equilibrium

m k + 1 k

p(k+1)
m = ∑

n

P(m |n) p(k)
n

p(k+1)
0

p(k+1)
1
⋮

=
P(0 |0) P(0 |1) ⋯
P(1 |0) P(1 |1) ⋯

⋮ ⋮

p(k)
0

p(k)
1
⋮

,

[π0, π1, π2, …]
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Detailed balance
One way to figure out  is through the property of detailed balance.


Detailed balance requires that the rate at which the  transition occurs 
is the same as the rate at which the opposite transition occurs .


If this holds for every pair of states, then the probability distribution is 
necessarily stationary.





Note: not all Markov chains obey detailed balance!

πn

n → n + 1
n + 1 → n

P(n + 1 |n) πn = P(n |n + 1) πn+1 for all n ∈ {0,…, N} .
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Example: 2D Ising model
Set of lattice sites , usually a square grid


At each site, there is a discrete variable 
, representing the site’s spin


A spin configuration 


For any two adjacent sites  (no double 
counting) there is a spin interaction  and at 
every site there may be an external field 





Simplification:  and 

Λ

σk ∈ {−1, + 1}

σ = {σk}k∈Λ

⟨ij⟩
Jij

hj

E(σ) = − ∑
⟨ij⟩

Jijσiσj − μ∑
j

hjσj

J = Jij > 0 hj = 0
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Adjacent sites



Energy
Given the simplified Hamiltonian 





The energy of the configuration here is 



Assume periodic boundary conditions


Hint: number of adjacent site pairs (no double 
counting) is


E(σ) = − J∑
⟨ij⟩

σiσj

E = − 152J

Nadjacent pairs = 2 |Λ |
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Adjacent sites



Probability
The probability of any given configuration 
follows the Boltzmann distribution





where 


is the partition function. 


With  sites  possible 
states

p(σ) =
1
Z

exp (−
E(σ)
kBT )

Z = ∑
σ

exp (−
E(σ)
kBT )

10 × 10 2100 ≈ 1030
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Ising model phase transition 
With  lattice,  possible states!


Phase transition occurs at a critical temperature: ordered phase at low , 
disordered phase at high . How can we compute this?

150 × 150 222500 ≈ 106773

T
T
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High T Low T



Ising model phase transition 
Often interested in quantities like the average magnetization, i.e. first we 
average over the lattice





then we take a thermodynamic average





σave =
1

|Λ | ∑
k∈Λ

σk

⟨σave⟩ = ∑
σ

σavep(σ)
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Markov chain MC
Trying to calculate the partition function directly by summing over all states is 
prohibitively time-consuming.


Instead the MCMC method selectively samples the states.


To accomplish this, we design a Markov process whose stationary distribution 
is equal to the correct distribution of probabilities. 


Once we have this Markov process, we can generate a long Markov chain and 
calculate moving averages of our desired quantities like . 


If the Markov chain is long enough, this will converge to the true expectation 
value

⟨σave⟩
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Metropolis-Hastings algorithm 
Design a Markov process to match a given stationary distribution : Metropolis-Hastings 
algorithm based on detailed balance





1. On step , the system is in state . Randomly choose a candidate state  by making an 
unbiased random step through the space of possible states.


2. Compare the probabilities  and 


If , accept the candidate


If , accept the candidate with probability . Otherwise, reject the candidate


3. If the candidate is accepted, the state in step  is . Otherwise, the state in step  
remains  


4. Repeat

πn

P(n |m) πm = P(m |n) πn for all m, n

k n m

πn πm

πm ≥ πn

πm < πn πm/πn

k + 1 m k + 1
n
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Checking detailed balance
Let’s verify that the stationary distribution of the Markov process satisfies detailed 
balance. 


Consider two states   with  . 


Starting from  , suppose we choose candidate step  with some probability . 
Then, the transition probability for  is  times the acceptance probability 1. 


Starting from  , we will choose candidate step   with the same probability  
(assuming this is unbiased). Then, the transition probability for   is  times the 
acceptance probability .


a, b πa ≤ πb

a a → b q
a → b q

b b → a q
b → a q

πa/πb

P(b |a) = q

P(a |b) = q
πa

πb

⇒ P(a |b) πb = P(b |a) πa (detailed balance)
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Stepping through state space
One way of thinking about the Metropolis algorithm is that it takes a scheme 
for performing an unbiased random walk through the space of possible states 
(represented by our candidate choices), and converts it into a scheme for 
performing a biased random walk


The biased random walk corresponds to a Markov process with the stationary 
distribution we are interested in
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Applying MCMC to the 2D Ising model
To apply the MCMC method, we design a Markov process using the Metropolis algorithm discussed above. 
In the context of the Ising model, the steps are as follows:


1. On step  , randomly choose one of the spins  and consider a candidate move which consists of flipping 
that spin  
2. Calculate the change in energy that would result from flipping spin , relative to , i.e. the quantity:





where  is the change in  due to the spin flip  


If , accept the spin flip


If , accept the spin flip with probability . Otherwise, reject the flip.


3. Update the moving average of .


4. Repeat.

k i
σi → − σi

i kBT

ΔE
kBT

= −
J

kBT ∑
⟨ij⟩

σj Δσi,

Δσi σi Δσi = − 2σi

ΔE ≤ 0

ΔE > 0 exp(−ΔE/kBT)

⟨σave⟩
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