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PHYS 142/242
Lecture 14: Markov chain Monte Carlo (Continued)



Markov process and chain
A Markov process is a set of probabilistic rules that tell us how to choose a 
new state of the system, based only on the system's current state. If the system 
is currently in state  then the probability of choosing state  on the next step is 
given by the “transition probability” . 


By repeatedly applying the Markov process, we move the system through a 
random sequence of states,   where  denotes the state 
on step  .


This random sequence is called a Markov chain.


Because the system must transition to some state, 
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Markov process and chain
The probability to be found in state  at step  depends only on step 





or in terms of the transition matrix,





The vector of stationary probabilities   is an eigenvector of the transition 
matrix, with eigenvalue 1.


We will use Markov processes to model thermodynamic systems, such that a stationary 
distribution represents the distribution of thermodynamic microstates in thermal equilibrium
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Detailed balance
Detailed balance requires that the rate at which the  transition occurs 
is the same as the rate at which the opposite transition occurs .





If this holds for every pair of states, then the probability distribution is 
necessarily stationary.





Note: not all Markov chains obey detailed balance!

n → n + 1
n + 1 → n

P(n + 1 |n) πn = P(n |n + 1) πn+1 for all n ∈ {0,…, N} .
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2D Ising model
The Hamiltonian is 


  


where  represents the spin of 
each site. The probability of any given state is 


 


where 


. 


With  sites  possible states

E(σ) = − J∑
⟨ij⟩

σiσj

σk ∈ {−1, + 1}

p(σ) = 1
Z exp (− E(σ)

kBT )

Z = ∑σ exp (− E(σ)
kBT )

10 × 10 2100 ≈ 1030
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Ising model phase transition 
With  lattice,  possible states!


Phase transition occurs at a critical temperature: ordered phase at low , 
disordered phase at high . How can we compute this?

150 × 150 222500 ≈ 106773

T
T
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Ising model phase transition 
Often interested in quantities like the average magnetization, i.e. first we 
average over the lattice





then we take a thermodynamic average





If we plot this versus temperature, we can see there is some critical 
temperature where the system goes from being ferromagnetic (spins are 
aligned) to paramagnetic (spins are not aligned)
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Ising model phase transition 
In 2D, we can actually analytically calculate the critical temperature as solved 
in L. Onsager, Phys. Rev. 65, 117 (1944)


kBTc

J
=

2

ln(1 + 2)
≈ 2.269
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Markov chain MC
Trying to calculate the partition function directly by summing over all states is 
prohibitively time-consuming.


Instead the MCMC method selectively samples the states.


To accomplish this, we design a Markov process whose stationary distribution 
is equal to the correct distribution of probabilities. 


Once we have this Markov process, we can generate a long Markov chain and 
calculate moving averages of our desired quantities like . 


If the Markov chain is long enough, this will converge to the true expectation 
value

⟨σave⟩
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Metropolis-Hastings algorithm 
Design a Markov process to match a given stationary distribution : Metropolis-Hastings 
algorithm based on detailed balance





1. On step , the system is in state . Randomly choose a candidate state  by making an 
unbiased random step through the space of possible states.


2. Compare the probabilities  and 


If , accept the candidate


If , accept the candidate with probability . Otherwise, reject the candidate


3. If the candidate is accepted, the state in step  is . Otherwise, the state in step  
remains  


4. Repeat

πn

P(n |m) πm = P(m |n) πn for all m, n

k n m

πn πm

πm ≥ πn

πm < πn πm/πn

k + 1 m k + 1
n
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Checking detailed balance
Let’s verify that the stationary distribution of the Markov process satisfies detailed 
balance. 


Consider two states   with  . 


Starting from  , suppose we choose candidate step  with some probability . 
Then, the transition probability for  is  times the acceptance probability 1. 


Starting from  , we will choose candidate step   with the same probability  
(assuming this is unbiased). Then, the transition probability for   is  times the 
acceptance probability .


a, b πa ≤ πb

a a → b q
a → b q

b b → a q
b → a q

πa/πb

P(b |a) = q

P(a |b) = q
πa

πb

⇒ P(a |b) πb = P(b |a) πa (detailed balance)
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Stepping through state space
One way of thinking about the Metropolis algorithm is that it takes a scheme 
for performing an unbiased random walk through the space of possible states 
(represented by our candidate choices), and converts it into a scheme for 
performing a biased random walk


The biased random walk corresponds to a Markov process with the stationary 
distribution we are interested in
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Applying MCMC to the 2D Ising model
To apply the MCMC method to the Ising model, we design a Markov process using the Metropolis 
algorithm as follows


1. On step  , randomly choose one of the spins  and consider flipping it  
2. Calculate the change in energy that would result from flipping spin , i.e. the quantity:





where  is the change in  due to the spin flip


If , accept the spin flip


If , accept the spin flip with probability . Otherwise, reject the flip.


3. Update the moving average of  (or whatever quantity we are interested in).


4. Repeat.

k i σi → − σi
i

ΔE = − J∑
⟨ij⟩

σj Δσi,

Δσi = − 2σi σi

ΔE ≤ 0

ΔE > 0 exp(−ΔE/kBT)

⟨σave⟩
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Practical considerations for MCMC
• Several practical considerations


• Acceptance rate: the rate at which we accept proposals is important. We 
want this to be relatively high (to reduce total running time), but not always 
1 (which may mean we’re not sufficiently sampling the full space). Typical 
values are 15% to 50%


• Burn in


• Error and (integrated) autocorrelation time
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Burn-in
“Burn-in”: common to throw out the first few states of a Markov chain, maybe 
the first 100 or the first 1000


The idea is to get rid of “transient behavior” connected to an improbable intial 
configuration


Equivalent: pick an initial state near equilibrium (i.e. not unlikely)
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Autoregressive series 



with  and



starting from  (left) 
and  (right)

xn+1 = rxn + en
r = 0.98

en ∼ 𝒩(0,1)
x0 = 10

x0 = 0



MC error
Our goal is to estimate the expectation value of some physical observable . 
Using traditional MC sampling, the estimate is given by the average over  
samples





If these samples are independent, then the variance on this estimator is





and the error decreases as  as we generate more samples.

f
N

f̄ =
1
N

N

∑
i=1

fi

σ2
f̄ =

1
N

Var[ fi] =
1
N (⟨ f2⟩ − f̄ 2)

1/ N
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MCMC error
However, in MCMC, the samples are not independent! What is the variance?





where   is the integrated autocorrelation time for the chain.


 is the effective number of samples and   is the number of steps that are 
needed before the chain “forgets” where it started.

σ2
f̄ =

τf

N
Var[ fi]

τf

N/τf τf
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Autocorrelation function
Can estimate the autocorrelation function of the observable  as





Note the variance is a special case: 


We can also define the normalized autocorrelation (like a Pearson correlation 
coefficient)





It’s probably more appropriate to define  as “autocovariance,” but in 
practice you have to figure out what the literature means from context

f

cf(t) = ⟨( fi − f̄ ) ( fi+t − f̄ )⟩ =
1

N − t

N−t

∑
i=1

( fi − f̄ ) ( fi+t − f̄ )

cf(0) = Var[ fi]

ρf(t) = cf(t)/cf(0)

cf(t)
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Integrated autocorrelation time
The integrated autocorrelation time is then given by





Trying to approximate this directly is difficult. At longer lags,  starts to 
contain more noise than signal and summing all the way out to  will result in a 
very noisy estimate of . Instead we want to cut off the some at some 





One suggestion: using smallest  where 

τf =
∞

∑
t=−∞

ρf(t) = 1 + 2
N

∑
t=1

ρf(t)

ρf(t)
N

τf M ≪ N

τf(M) = 1 + 2
M

∑
t=1

ρf(t)

M M ≥ 5τf(M)
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Estimating
Estimating integrated autocorrelation function: https://emcee.readthedocs.io/
en/stable/tutorials/autocorr/
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