PHYS 142/242 Lecture 14: Markov chain Monte Carlo (Continued)

Javier Duarte — February 10, 2025

Markov process and chain

given by the "transition probability" $P(m \mid n)$.

By repeatedly applying the Markov process, we move the system through a on step k.

This random sequence is called a *Markov chain*.

Because the system must transition to some state,

$$\sum P(m | n) = 1$$
 for all $n \in \{0, 1, ...\}$

т

- A Markov process is a set of probabilistic rules that tell us how to choose a new state of the system, based only on the system's current state. If the system is currently in state n then the probability of choosing state m on the next step is
- random sequence of states, $\{n^{(0)}, n^{(1)}, n^{(2)}, ...\}$ where $n^{(k)}$ denotes the state

- •• •

Markov process and chain

The probability to be found in state m at step k + 1 depends only on step k

$$p_m^{(k+1)} = \sum_n P(m \mid n) p_n^{(k)}$$

or in terms of the transition matrix,

$$\begin{bmatrix} p_0^{(k+1)} \\ p_1^{(k+1)} \\ \vdots \end{bmatrix} = \begin{bmatrix} P(0|0) & P(0|1) & \cdots \\ P(1|0) & P(1|1) & \cdots \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} P(0|0) & P(0|1) & \cdots \\ P(1|1) & \cdots \\ \vdots & \vdots \end{bmatrix}$$

The vector of stationary probabilities $[\pi_0, \pi_1, \pi_2, ...]$ is an eigenvector of the transition matrix, with eigenvalue 1.

We will use Markov processes to model thermodynamic systems, such that a stationary distribution represents the distribution of thermodynamic microstates in thermal equilibrium

 $p_1^{(k)}$

Detailed balance

$$P(n+1 \mid n) \pi_n = P(n \mid n+1) \pi_{n+1}$$

If this holds for every pair of states, then the probability distribution is necessarily stationary.

$\lceil \pi_0 \rceil$		P(0 0)	P(0 1)	• • •
π_1	=	$P(1 \mid 0)$	P(1 1)	• • •
•		• •	• • •	

Note: not all Markov chains obey detailed balance!

Detailed balance requires that the rate at which the $n \rightarrow n + 1$ transition occurs is the same as the rate at which the opposite transition occurs $n + 1 \rightarrow n$.

for all $n \in \{0, ..., N\}$.

$$\begin{bmatrix} \pi_0 \\ \pi_1 \\ \vdots \end{bmatrix},$$

2D Ising model

The Hamiltonian is

$$E(\sigma) = -J\sum_{\langle ij\rangle}\sigma_i\sigma_j$$

where $\sigma_k \in \{-1, +1\}$ represents the spin of each site. The probability of any given state is

$$p(\sigma) = \frac{1}{Z} \exp\left(-\frac{E(\sigma)}{k_{\rm B}T}\right)$$

where

$$Z = \sum_{\sigma} \exp\left(-\frac{E(\sigma)}{k_{\rm B}T}\right).$$

With 10×10 sites $2^{100} \approx 10^{30}$ possible states

Ising model phase transition

With 150×150 lattice, $2^{22500} \approx 10^{6773}$ possible states!

Phase transition occurs at a critical temperature: ordered phase at low T, disordered phase at high T. How can we compute this?

Ising model phase transition

Often interested in quantities like the average magnetization, i.e. first we average over the lattice

$$\sigma_{\text{ave}} = \frac{1}{|\Lambda|} \sum_{k \in \Lambda} \sigma_k$$

then we take a thermodynamic average

$$\langle \sigma_{\rm ave} \rangle = \sum_{\sigma} \sigma_{\rm ave} p(\sigma)$$

If we plot this versus temperature, we can see there is some critical temperature T_c where the system goes from being ferromagnetic (spins are aligned) to paramagnetic (spins are not aligned)

Ising model phase transition

in L. Onsager, Phys. Rev. 65, 117 (1944)

In 2D, we can actually analytically calculate the critical temperature as solved

Markov chain MC

Trying to calculate the partition function directly by summing over all states is prohibitively time-consuming.

Instead the MCMC method selectively samples the states.

To accomplish this, we design a Markov process whose stationary distribution is equal to the correct distribution of probabilities.

Once we have this Markov process, we can generate a long Markov chain and calculate moving averages of our desired quantities like $\langle \sigma_{\rm ave} \rangle$.

If the Markov chain is long enough, this will converge to the true expectation value

Metropolis-Hastings algorithm

Design a Markov process to match a given stationary distribution π_n : *Metropolis-Hastings algorithm* based on detailed balance

 $P(n \mid m) \pi_m = P(m \mid n) \pi_n$ for all m, n

1. On step k, the system is in state n. Randomly choose a candidate state m by making an unbiased random step through the space of possible states.

2. Compare the probabilities π_n and π_m

If $\pi_m \geq \pi_n$, accept the candidate

If $\pi_m < \pi_n$, accept the candidate with probability π_m/π_n . Otherwise, reject the candidate 3. If the candidate is accepted, the state in step k + 1 is m. Otherwise, the state in step k + 1remains *n*

4. Repeat

Checking detailed balance

Let's verify that the stationary distribution of the Markov process satisfies detailed balance.

Consider two states a, b with $\pi_a \leq \pi_b$.

Starting from a, suppose we choose candidate step $a \rightarrow b$ with some probability q. Then, the transition probability for $a \rightarrow b$ is q times the acceptance probability 1.

Starting from b, we will choose candidate step $b \rightarrow a$ with the same probability q acceptance probability π_a/π_b .

$$P(b \mid a) = q$$

$$P(a \mid b) = q \frac{\pi_a}{\pi_b} \qquad \Rightarrow \qquad P(a \mid b) \pi_b = A$$

(assuming this is unbiased). Then, the transition probability for $b \rightarrow a$ is q times the

 $P(b \mid a) \pi_a$ (detailed balance)

Stepping through state space

One way of thinking about the Metropolis algorithm is that it takes a scheme for performing an unbiased random walk through the space of possible states (represented by our candidate choices), and converts it into a scheme for performing a biased random walk

The biased random walk corresponds to a Markov process with the stationary distribution we are interested in

Applying MCMC to the 2D Ising model

To apply the MCMC method to the Ising model, we design a Markov process using the Metropolis algorithm as follows

1. On step k, randomly choose one of the spins i and consider flipping it $\sigma_i \to -\sigma_i$ 2. Calculate the change in energy that would result from flipping spin i, i.e. the quantity:

$$\Delta E = - \left[J \sum_{\langle ij \rangle} \sigma_j \right] \Delta \sigma_i,$$

where $\Delta \sigma_i = -2\sigma_i$ is the change in σ_i due to the spin flip

If $\Delta E \leq 0$, accept the spin flip

If $\Delta E > 0$, accept the spin flip with probability $\exp(-\Delta E/k_{\rm B}T)$. Otherwise, reject the flip.

3. Update the moving average of $\langle \sigma_{\rm ave} \rangle$ (or whatever quantity we are interested in). 4. Repeat.

Practical considerations for MCMC

- Several practical considerations
 - values are 15% to 50%
 - Burn in
 - Error and (integrated) autocorrelation time

• Acceptance rate: the rate at which we accept proposals is important. We want this to be relatively high (to reduce total running time), but not always 1 (which may mean we're not sufficiently sampling the full space). Typical

Burn-in

the first 100 or the first 1000

configuration

Equivalent: pick an initial state near equilibrium (i.e. not unlikely)

Autoregressive series $x_{n+1} = rx_n + e_n$ with r = 0.98 and $e_n \sim \mathcal{N}(0,1)$ starting from $x_0 = 10$ (left) 4 and $x_0 = 0$ (right) \mathbf{Q}_{i}

200

0

"Burn-in": common to throw out the first few states of a Markov chain, maybe

- The idea is to get rid of "transient behavior" connected to an improbable intial

MC error

Our goal is to estimate the expectation value of some physical observable f. Using traditional MC sampling, the estimate is given by the average over N samples

$$\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f_i$$

If these samples are independent, then the variance on this estimator is

$$\sigma_{\bar{f}}^2 = \frac{1}{N} \operatorname{Var}[f_i] = \frac{1}{N} \left(\langle f^2 \rangle - \bar{f}^2 \right)$$

and the error decreases as $1/\sqrt{N}$ as we generate more samples.

MCMC error

$$\sigma_{\bar{f}}^2 = \frac{\tau_f}{N} \operatorname{Var}[f_i]$$

where τ_f is the integrated autocorrelation time for the chain.

needed before the chain "forgets" where it started.

However, in MCMC, the samples are not independent! What is the variance?

 N/τ_f is the effective number of samples and τ_f is the number of steps that are

Autocorrelation function

Can estimate the autocorrelation function of the observable f as

$$c_f(t) = \left\langle (f_i - \bar{f}) \left(f_{i+t} - \bar{f} \right) \right\rangle = \frac{1}{N-t} \sum_{i=1}^{N-t} \left(f_i - \bar{f} \right) \left(f_{i+t} - \bar{f} \right)$$

Note the variance is a special case: $c_f(0) = Var[f_i]$

coefficient)

$$\rho_f(t) = c_f(t)/c_f(0)$$

It's probably more appropriate to define $c_f(t)$ as "autocovariance," but in practice you have to figure out what the literature means from context

- We can also define the normalized autocorrelation (like a Pearson correlation)

Integrated autocorrelation time

The integrated autocorrelation time is then given by

$$\tau_{f} = \sum_{t=-\infty}^{\infty} \rho_{f}(t) = 1 + 2 \sum_{t=1}^{N} \rho_{f}(t)$$

Trying to approximate this directly is difficult. At longer lags, $\rho_f(t)$ starts to contain more noise than signal and summing all the way out to N will result in a very noisy estimate of τ_{f^*} Instead we want to cut off the some at some $M \ll N$

$$\tau_f(M) = 1 + 2 \sum_{t=1}^M \rho_f(t)$$

One suggestion: using smallest M where $M \ge 5\tau_f(M)$

Estimating

Estimating integrated autocorrelation function: <u>https://emcee.readthedocs.io/</u> <u>en/stable/tutorials/autocorr/</u>

