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2D Ising model
The Hamiltonian is 


  


where  represents the spin of 
each site. The probability of any given state is 


 


where 


. 


With  sites  possible states

E(σ) = − J∑
⟨ij⟩

σiσj

σk ∈ {−1, + 1}

p(σ) = 1
Z exp (− E(σ)

kBT )

Z = ∑σ exp (− E(σ)
kBT )

10 × 10 2100 ≈ 1030
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Ising model phase transition 
With  lattice,  possible states!


Phase transition occurs at a critical temperature: ordered phase at low , 
disordered phase at high . How can we compute this?

150 × 150 222500 ≈ 106773

T
T
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Ising model phase transition 
Often interested in quantities like the average magnetization, i.e. first we 
average over the lattice





then we take a thermodynamic average





If we plot this versus temperature, we can see there is some critical 
temperature where the system goes from being a ferromagnetic (spins are 
aligned) to a paramagnetic (spins are not aligned)

σave =
1

|Λ | ∑
k∈Λ

σk

⟨σave⟩ = ∑
σ

σavep(σ)

Tc
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Ising model phase transition 
In 2D, we can actually analytically calculate the critical temperature as solved 
in L. Onsager, Phys. Rev. 65, 117 (1944)


kBTc

J
=

2

ln(1 + 2)
≈ 2.269
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https://doi.org/10.1103/PhysRev.65.117


Applying MCMC to the 2D Ising model
To apply the MCMC method to the Ising model, we design a Markov process using the Metropolis 
algorithm as follows


1. On step  , randomly choose one of the spins  and consider flipping it  
2. Calculate the change in energy that would result from flipping spin , i.e. the quantity:





where  is the change in  due to the spin flip


If , accept the spin flip


If , accept the spin flip with probability . Otherwise, reject the flip.


3. Update the moving average of  (or whatever quantity we are interested in).


4. Repeat.

k i σi → − σi
i

ΔE = − J∑
⟨ij⟩

σj Δσi,

Δσi = − 2σi σi

ΔE ≤ 0

ΔE > 0 exp(−ΔE/kBT)

⟨σave⟩
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Practical considerations for MCMC
• Several practical considerations


• Acceptance rate: the rate at which we accept proposals is important. We want 
this to be relatively high (to reduce total running time), but not always 1 (which 
may mean we’re not sufficiently sampling the full space). Typical values are 15% 
to 50%


• Length of chain: Need long enough chain to “converge” to stationary distribution


• Number of chains: Running multiple chains can help estimate uncertainty and 
whether each chain has converge


• Burn in: Samples to remove from the beginning of each chain


• Thinning: Removing every th sample


• Error and (integrated) autocorrelation time

n
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Burn-in
“Burn-in”: common to throw out the first few states of a Markov chain, maybe 
the first 100 or the first 1000


The idea is to get rid of “transient behavior” connected to an improbable intial 
configuration


Equivalent: pick an initial state near equilibrium (i.e. not unlikely)
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Autoregressive series 



with  and



starting from  (left) 
and  (right)

xn+1 = rxn + en
r = 0.98

en ∼ 𝒩(0,1)
x0 = 10

x0 = 0



MC error
Our goal is to estimate the expectation value of some physical observable . 
Using traditional MC sampling, the estimate is given by the average over  
samples





If these samples are independent, then the variance on this estimator is





and the error decreases as  as we generate more samples.

f
N

f̄ =
1
N

N

∑
i=1

fi

σ2
f̄ =

1
N

Var[ fi] =
1
N (⟨ f2⟩ − f̄ 2)

1/ N

9



MCMC error
However, in MCMC, the samples are not independent! What is the variance?





where   is the integrated autocorrelation time for the chain.


 is the effective number of samples and   is the number of steps that are 
needed before the chain “forgets” where it started.

σ2
f̄ =

τf

N
Var[ fi]

τf

N/τf τf
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Autocorrelation function
Can estimate the autocorrelation function of the observable  as





Note the variance is a special case: 


We can also define the normalized autocorrelation (like a Pearson correlation 
coefficient)





It’s probably more appropriate to define  as “autocovariance,” but in 
practice you have to figure out what the literature means from context

f

cf(t) = ⟨( fi − f̄ ) ( fi+t − f̄ )⟩ =
1

N − t

N−t

∑
i=1

( fi − f̄ ) ( fi+t − f̄ )

cf(0) = Var[ fi]

ρf(t) = cf(t)/cf(0)

cf(t)
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Integrated autocorrelation time
The integrated autocorrelation time is then given by





Trying to approximate this directly is difficult. At longer lags,  starts to 
contain more noise than signal and summing all the way out to  will result in a 
very noisy estimate of . Instead we want to cut off the some at some 





One suggestion: using smallest  where 

τf =
∞

∑
t=−∞

ρf(t) = 1 + 2
N

∑
t=1

ρf(t)

ρf(t)
N

τf M ≪ N

τf(M) = 1 + 2
M

∑
t=1

ρf(t)

M M ≥ 5τf(M)
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Estimating
Estimating integrated autocorrelation time: https://emcee.readthedocs.io/en/
stable/tutorials/autocorr/
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