PHYS 142/242 Lecture 15: Ising Model and MCMC

Javier Duarte — February 12, 2024

2D Ising model

The Hamiltonian is

$$E(\sigma) = -J\sum_{\langle ij\rangle}\sigma_i\sigma_j$$

where $\sigma_k \in \{-1, +1\}$ represents the spin of each site. The probability of any given state is

$$p(\sigma) = \frac{1}{Z} \exp\left(-\frac{E(\sigma)}{k_{\rm B}T}\right)$$

where

$$Z = \sum_{\sigma} \exp\left(-\frac{E(\sigma)}{k_{\rm B}T}\right).$$

With 10×10 sites $2^{100} \approx 10^{30}$ possible states

Ising model phase transition

With 150×150 lattice, $2^{22500} \approx 10^{6773}$ possible states!

Phase transition occurs at a critical temperature: ordered phase at low T, disordered phase at high T. How can we compute this?

Ising model phase transition

Often interested in quantities like the average magnetization, i.e. first we average over the lattice

$$\sigma_{\text{ave}} = \frac{1}{|\Lambda|} \sum_{k \in \Lambda} \sigma_k$$

then we take a thermodynamic average

$$\langle \sigma_{\rm ave} \rangle = \sum_{\sigma} \sigma_{\rm ave} p(\sigma)$$

If we plot this versus temperature, we can see there is some critical temperature T_c where the system goes from being a ferromagnetic (spins are aligned) to a paramagnetic (spins are not aligned)

Ising model phase transition

in L. Onsager, Phys. Rev. 65, 117 (1944)

In 2D, we can actually analytically calculate the critical temperature as solved

Applying MCMC to the 2D Ising model

To apply the MCMC method to the Ising model, we design a Markov process using the Metropolis algorithm as follows

1. On step k, randomly choose one of the spins i and consider flipping it $\sigma_i \to -\sigma_i$ 2. Calculate the change in energy that would result from flipping spin i, i.e. the quantity:

$$\Delta E = - \left[J \sum_{\langle ij \rangle} \sigma_j \right] \Delta \sigma_i,$$

where $\Delta \sigma_i = -2\sigma_i$ is the change in σ_i due to the spin flip

If $\Delta E \leq 0$, accept the spin flip

If $\Delta E > 0$, accept the spin flip with probability $\exp(-\Delta E/k_{\rm B}T)$. Otherwise, reject the flip.

3. Update the moving average of $\langle \sigma_{\rm ave} \rangle$ (or whatever quantity we are interested in). 4. Repeat.

Practical considerations for MCMC

- Several practical considerations
 - Acceptance rate: the rate at which we accept proposals is important. We want this to be relatively high (to reduce total running time), but not always 1 (which may mean we're not sufficiently sampling the full space). Typical values are 15% to 50%
 - Length of chain: Need long enough chain to "converge" to stationary distribution
 - Number of chains: Running multiple chains can help estimate uncertainty and whether each chain has converge
 - Burn in: Samples to remove from the beginning of each chain
 - Thinning: Removing every *n*th sample
 - Error and (integrated) autocorrelation time

Burn-in

the first 100 or the first 1000

configuration

Equivalent: pick an initial state near equilibrium (i.e. not unlikely)

Autoregressive series $x_{n+1} = rx_n + e_n$ with r = 0.98 and $e_n \sim \mathcal{N}(0,1)$ starting from $x_0 = 10$ (left) 4 and $x_0 = 0$ (right) ęį,

200

0

"Burn-in": common to throw out the first few states of a Markov chain, maybe

- The idea is to get rid of "transient behavior" connected to an improbable intial

MC error

Our goal is to estimate the expectation value of some physical observable f. Using traditional MC sampling, the estimate is given by the average over N samples

$$\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f_i$$

If these samples are independent, then the variance on this estimator is

$$\sigma_{\bar{f}}^2 = \frac{1}{N} \operatorname{Var}[f_i] = \frac{1}{N} \left(\langle f^2 \rangle - \bar{f}^2 \right)$$

and the error decreases as $1/\sqrt{N}$ as we generate more samples.

MCMC error

$$\sigma_{\bar{f}}^2 = \frac{\tau_f}{N} \operatorname{Var}[f_i]$$

where τ_f is the integrated autocorrelation time for the chain.

needed before the chain "forgets" where it started.

However, in MCMC, the samples are not independent! What is the variance?

 N/τ_f is the effective number of samples and τ_f is the number of steps that are

Autocorrelation function

Can estimate the autocorrelation function of the observable f as

$$c_f(t) = \left\langle (f_i - \bar{f}) \left(f_{i+t} - \bar{f} \right) \right\rangle = \frac{1}{N-t} \sum_{i=1}^{N-t} \left(f_i - \bar{f} \right) \left(f_{i+t} - \bar{f} \right)$$

Note the variance is a special case: $c_f(0) = Var[f_i]$

coefficient)

$$\rho_f(t) = c_f(t)/c_f(0)$$

It's probably more appropriate to define $c_f(t)$ as "autocovariance," but in practice you have to figure out what the literature means from context

- We can also define the normalized autocorrelation (like a Pearson correlation)

Integrated autocorrelation time

The integrated autocorrelation time is then given by

$$\tau_f = \sum_{t=-\infty}^{\infty} \rho_f(t) = 1 + 2 \sum_{t=1}^{N} \rho_f(t)$$

Trying to approximate this directly is difficult. At longer lags, $\rho_f(t)$ starts to contain more noise than signal and summing all the way out to N will result in a very noisy estimate of τ_{f^*} Instead we want to cut off the some at some $M \ll N$

$$\tau_f(M) = 1 + 2 \sum_{t=1}^M \rho_f(t)$$

One suggestion: using smallest M where $M \ge 5\tau_f(M)$

Estimating

Estimating integrated autocorrelation time: <u>https://emcee.readthedocs.io/en/</u> stable/tutorials/autocorr/

