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Path integral

We’ve studied the path integral to evaluate the propagator, which represents
the probability amplitude of a particle at spacetime point (x, ¢ ) reaching

spacetime point (X, 7;)

K(xp, 1%, 1) = J@x(t)exp %J bL(x(t))dt

tCl

where L(x(1)) = 2 (%

the integral over all spacetime paths between (x , ¢,) and (x;, )

2
) — V(x) is the classical Lagrangian, Yx(t¢) denotes



Imaginary-time path integral

An alternative formulation uses imaginary time, where ¢ is replaced by —ir

h

lg

P(Xps Ty Xy T,) = J%(T)eXp . er Lp(x(7))dt

2
where Ly (x(7)) = % (%) + V(x(7)) is the “Euclidean Lagrangian”

Just as for real times, the path integral is over all paths between (x , 7,) and
(Xp» Tp)



Connection to quantum stat. mech.

If we set x, = x, = x and integrate over x(7) (i.e. take the trace), 7, = 0, and
7, = hf where f = 1/(kgT), we get partition function

o
/ = J@x(f)exp —%ﬂg L (x(7))dz
0

which alternatively can be calculated from the Boltzmann distribution

/[ = i e PEx
n=0



Calculating the ground state

Note, as we approach T — 0, i.e. 7, = hff = o0,

o0
/ = Z e PEn ~ e=PFo (i.e. only the first eigenvalue dominates the sum)
n=0

and
P, 1B x.0) = ) Pl (0 I ~ | @) |

So if we run with a long enough Ty, OUr probabillity distribution should converge to
the ground state.

We can use the path integral (with imaginary time) to directly calculate the ground
state!



Imaginary-time path

Discretize “time” with /V increments, 7, = 0, and 7, = Ny

Each vector (xy, X, ..., Xy_1) in N-dimensional space represents an imaginary-
time path

The probability density over this N-dimensional space is

1 [ 2rnhn 7 1 Al m(x; —xi_1)2 Xi—1 T X
e Xy_) = — exp [ —— +1V
P(Xps -5 Xy—1) 7 ( - ) P [ 7 (lzzl 21 ! ( 2




Calculating the ground state
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Figure 1. A discrete 1maginary-time path between (0,0) and (0,5). The histogram
indicates the number of times the particle crosses the corresponding spatial region.
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Markov chain Monte Carlo method

Markov chain Monte Carlo simulations are carried out in discrete “time” with N
increments, 7, = 0, and 7, = Ny

| 2rhn 2 I [ o mlx;—x_p)° Xi—1 T X
Z:llm coe d ...d B eX —_—— + V
;7_>0{ JXO le( m ) Pl h(Z 21 ! 2
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MCMC steps

Begin with an initial path, which may be an array of random numbers (‘hot’ start)
or zeros (‘cold’ start).

Update the path by applying Metropolis-Hastings algorithm to each element x;
of the path in random order (called a ‘sweep’)

(a) Generate a uniform random number u € [—h, h]

(b) Propose the new value xl-’ = X; + u of the path element and calculate the
resulting change AS in the action.

If AS < 0, accept the new path element.

If AS > 0, accept with probability exp(—AS/7)



MCMC considerations

One sweep produces the next path from the previous one

Each path is determined only by the immediately preceding path, so the
complete sequence of paths forms a Markov chain, but the paths are correlated

The initial path ‘thermalizes’, that is, attains equilibrium after V..., sweeps

To counteract the inherent autocorrelation in a Markov chain, a number N, of

paths between successive paths used for measurements (i.e. representative of
the equilibrium distribution) can be discarded
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Probability density calculation
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Figure 5. The probability densities |1/y(x)|*> of the ground-state wave functions for the
harmonic oscillator (a), (b) and the strong quartic limit (c), (d) in the Schrodinger
equation with Hamiltonian (32) for o7 =1 (b), (d) and 07 = 0.1 (a), (c). The his-
tograms were obtained according to the procedure shown in figure 1, with 200 paths
(every 100th from a chain of 20 000) used for determining the probability density. The
red curves superimposed on these histograms are numerical solutions to Schrodinger’s

equations with the corresponding Hamiltonians (32) obtained by using the bvp4 c solver
of MATLAB (reference [44, 45]).%
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Better approximation to the
ground state for smaller time

step (€ = 0.1 vs. € = 1)



Probability density calculation
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Figure 6. Calculation of the ground-state energy of the anharmonic oscillator with quar-
tic couplings (a) A = 0, (b) A = 1, (¢) A = 50, and (d) A = 10°. The filled circles repre-
sent values calculated from the MCMC method. In (a), the solid line 1s the exact result
calculated 1n reference [24, 30], while 1n (b)—(d), the broken curve 1s a (not-a-knot) cubic
spline fit carried out on linear axes. The logarithmic axis for 07 is for presentation pur-
poses only. Where error bars are not indicated, the errors are of the same size or smaller
than the symbol.
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