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Course Evaluations!

 Sudent Evaluations of Teaching (SET) for Winter 2025 will be available to
students from:

 Monday, March 3 to Saturday, March 15 at 8:00 AM.

o Students must complete their evaluations BEFORE 8AM on Saturday,
March 15 at 8:00 AM. No exceptions.

o Students will access their SETs from the Evaluations site. Students wiill

receive an email directing them where to access their evaluations. They will
also receive an email confirmation for each SET they complete.

* |f we reach above 80% submitted evaluations, extra credit on final projects!



Feynman rules for ABC toy theory

B
1. Label incoming/outgoing 4-momentum p,, p,, ..., p, and
internal 4-momenta ¢, g, ... & -
2. Vertex factors: For each vertex, write —ig
3.P tors: F h int | 1] it —i >
. P1
. Propagators: For each internal line, write q.z — <L /
J J Py V' Ps
l |
4. Conservation of energy & momentum: For each vertex, write
(2ﬂ)454(k1 —+ k2 + k3) %\ — /%
|

5. Integrate over internal momentum: For each internal line, write d4qj

(2m)?
6. Cancel the delta function (27:)454(]91 + p, + ... + p,) and multiply by i to get ./
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Scattering:A+A - B+ B

Assuming massless particles and CM frame, 33(5
ﬂ — %1 + %2 A:f;:‘__'q 814//:;6 """"""
RV 4 o4
M = Jl(—lg) ? X (27m)"0*(p; — q — p3)
X (2m)*6(p, + g — d*
(27)°07"(py + g — py) 27) q
I S SN SN
(Pr—p3)*  —2pi-p3  —2p=(1 —cosb)
gz g2 gz

%2=—=—=

(p1 —pa)? =2p;-ps —2p3(1 + cos6)

P P
A\f /B
A
qgiiC




Scattering:A+A - B+ B

Matrix element iIs

2 2

W S5  ___ &

p%(1 — cos?6) B p?Zsin? 6 A/

Differential cross section is

2
da_(1)2 S|\« |* |p/l 1 g”
dQ \8z) (E,+E)? |p;| 2\ 16zEp2sin2@

To get the total cross section, we would integrate this

do , do
C = Jdﬂ— = Jd@d¢ S1n 0——
dg) dg)




Monte Carlo integration

Basis of all Monte Carlo integration is the simple observation: the value of an
integral can be recast as the average of the integrand;

= J f)dx = (x; = x){f(X))

X1

So, if we take NV values of x distributed uniformly in (x;, x,), then the average
of f(x) will be a good estimator

| o
I~ 1Iy=(x — xl)ﬁ Zf(xi)
i=1



Monte Carlo uncertainty

Introducing the weight W, = (x, — x;)f(x,),

1 N
=1

and

) _ 1 N 2 | < 2
Vv=0" = — W7 — | — W.
Vv
Then oyjc =/ Vn/N =06/A/Nand Il = I, £ ~



Convergence in d dimensions

In d dimensions,

« MC integration still converges 1/\ﬁ\f

. Trapezoidal rule converges « 1/N*¢

. Simpson’s rule converges o 1/N¥¢

Particle physics: many dimensions

O

[f(?ﬁ)f(xz) | A \zdxldx2d3p1d3p2---d3 n54(P —P1—DPr— " —Dy)
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MC advantages and disadvantages

Disadvantages of MC

* Slow convergence in few dimensions

Advantages of MC

 Fast convergence in many dimensions

* Arbitrarily complex integration regions (finite discontinuities not a problem)
 Few points needed to get first estimate (“feasibility limit”)

* Every additional point improves accuracy (“growth rate”)

» Easy error estimate



MC for event generators

Up to here, only considered MC as a numerical integration method

If function being integrated is a probability density (positive definite), can
convert it to a simulation of physical process = an event generator

Y
fmax
L' g5 Y2
Simple example: ¢ = J —dx
o dx
Y1
Weighted events: generate events x with weights do/dx 0

Unweighted events: generate events x by keeping them with probability

(do/dx)/(doldx),,,, and giving them all weight (do/dx) calculated over all
generated events (not just accepted ones)
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Importance sampling

To Improve slow convergence, can use importance sampling. sample more
often when probability is high and less often when probability is low

1
Consider integral in one dimension = J f(x)dx; We want to get the best

0 i g(z)

estimate given M integrand evaluations (total samples) 2
ifﬁ,g’!,?e}‘ gjected
ANY
O

/5 Y
DSOS pted

1
7
If we have PDF p(x) where p(x) > 0 and [ p(x)dx =1
P55
0 I
Optimal variance when Fmin T max

£
[ 1fx) | dx

QA

px) =

11



VEGAS

Exploratory phase:
* subdivide integration space into rectangular grid
e perform integration in each subspace

* adjust grid according to dominant contributions

¢ integrate again, apprOXima’te Op’[lmal rectangular grid of hypercubes peak at the origin, adjusted grid
w T e A |
< HYPeRCugES | 'r
£ > K
Evaluation phase: -y = -

* integrate with high precision and optimized
frozen grid or efficiently generate events using
optimized frozen grid
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VEGAS algorithm (1)

VEGAS algorithm begins by approximating p(x) as a step function with N
steps, starting with uniform probability for all steps: 0 = x; < -+ < xy = 1,

px) =

, X —Ax; <x<x, 1=1,.,N

N Axl'

Each interval gets approximately the same number of samples n; ~ M/N.
For each iteration, we adjust the intervals {x;, Ax;}
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VEGAS algorithm (2)

Consider the contribution to the integral of the function in a given interval

fi= ), /Wl

x€|x—Ax;,x]
JiAX;
z ] fl ij

Divide each interval Ax; into m; + 1 subintervals

Definem, = int | K where typically K ~ 1000

Since the total number of subintervals is now > NN, the subintervals are
combined into NV groups, which define the new set of intervals

Optimal to combine them so that fl are approximately equal across all NV
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VEGAS algorithm (3)

To avoid rapid, destablilizing changes in the grid, it is better to damp the
subdivisions using

]CiA'Xi 1
Z ] fl’ij

lo fl-Axl-
g z ] ]?J'ij

a typically set between 0.2 and 2
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VEGAS error analysis

To obtain a cumulative estimate of the integral and its standard error from
each iteration

—1/2

(I, - Ty?

~ N. 1

iter

Also good sanity check is that y* = Z
;9
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VEGAS hlgher dimensions

In 2-d we write t—jdxjdyf(x P) = jdxpx(x)jdypy(y) AC)
p.(x)p,(y)
Divide x —axis into N equal segments 0=x, <x, <---<x, =1 , Ax, =x,—x,
Divide y —axis into N equal segments 0=y, <y, <---<yy =1, Ay.=y. -y, |
]
X) = forx.—Ax.<x<x., 1=1,2,....N
px( ) NAxl l l l
]
= fory.—Ay.<y<y., 1=1,2,....N
P, (») NAy, Y, —Ay, =y <y,
1-d algorithm applied along x —axis with
— X, X,
x; —Ax<x<x; 0<y<l Py(.V) Ax, x; —Ax; 0 Py(.V)
1-d algorithm applied along y—axis with
: w T A
= Py U e () LT
(f;)z — dy dx S—— HyYPeRcugEes ( ' :
y—AyZ:<y<y 0<Z:x<1 P (x) Ayi yiJAyi '([ p.(x) j7 :> |

-3 5

Easy to generalize, but assumption is f(x, y) can be reasonably approXimated by
separable px(x)py(y) (often true in particle physics, but not always)



2D VEGAS grid

0.8 1

0.2
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Figure 1: VEGAS map for the D = 4 integral defined in Eqgs. (26) and Eq. (27). The figure shows grid lines for every 50® increment along the x!
and x” axes; grids for the x> and x* axes are the same as for x°.

Fig. 1 shows the grid corresponding to a VEGAS map optimized for the D = 4 dimensional integral

1
fd4x (e—l()()(X—l‘l)2 + e—lOO(X—I‘z)z), (26)
0

2

where vector x = (x!, x%, 2%, x*), and

r; =(0.33,0.5,0.5,0.5)
r; = (0.67,0.5,0.5,0.5). (27)

The grid concentrates increments near 0.33 and 0.67 for x!, and near 0.5 in the other directions. Each rectangle in the
figure receives, on average, the same number of Monte Carlo integration samples.

18



Fermi’s Golden Rule (for scattering)

Ingredients: amplitude () for the process and the phase space (£2) available

For a two-to-two scattering process (1 + 2 — 3 4+ 4), cross section is given by

\) 2 in N4
= | AN~ (2r)"6"(py + Py = P3 = Py)
4\/ (p1 - P)* — (mymy)?
p17 ml p3’ m3
< T2w2 - mdoc-22
T £ — m: :
j=3 E (27)*
S accounts for double-counting with identical particles Py, Mo Py My

Each outgoing particle lies on its mass shell
Each outgoing energy is positive

Energy and momentum must be conserved

Although we can’t fully calculate o without knowing the form of .Z, we can calculate the differential cross
section:

do ( 1 )2 S| py
dQ \8z/) (E,+E)? |p, 1




eTe” — ¥y > uTu” in Quantum Electrodynamics (QED)

* |ast time, we wrote down the general differential cross section for 2-to-2
scattering

do 1

e |\ H?
dQQ  64n’EZ 4

. Simplify it in the high-energy limit £_ > m,:

« How do we calculate .Z in QED?
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Feynman Rules for QED

Feynman Rules 4. Propagators: Each internal line contributes a factor as

follows:
1. Notation: To each external line associate a momentum i(y*q, + me)
e . Electrons and positrons: Y_4u
P1,P2,- -, Pn, and draw an arrow next to the line, indicating ' G — m2c?
the positive direction (forward in time).* To each internal line
associate a momentum g1, gz, . . .; again draw an arrow next Photons: —1gu0
to the line indicating the positive direction (arbitrarily ' q°
assigned). See Figure 7.1.
2. External lines: External lines contribute factors as follows: 5. Conservation of energy and momentum: For each vertex, write
a delta function of the form
[ Incoming( -} : u
Electrons : < 4 o4
 Qutgoing(e—=-) : 4 (27)70" (k1 + kg + k3)
Positrons © < Incoming(—») : @
T Outgoing(e<) : v where the k’s are the three four-momenta coming into the
f Incoming(we) : ¢ vertex (if an arrow leads outward, then k is minus the
Phrotons : o "TH

\Outgoing(w) € four-momentum of that line).
6. Integrate over internal momenta: For each internal

3. Vertex factors: Each vertex contributes a factor momentum ¢, write a factor

d"’q

Y
i (27)*

The dimensionless coupling constant g, is related to the

charge of the electron: g, = e /4w /fic = V/4ma.* 7

and integrate.
. Cancel the delta function: The result will include a factor

(2m)*8*(p1 +p2 + - — Pa)

corresponding to overall energy—momentum conservation.

Cancel this factor, and multiply by i; what remains is .Z.
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e"e” = vy — uu- Amplitude

* (Given a specific set of spins

, —1g,, ,
—iM =V (p’)(iey’“‘)us(p)( q; )ﬁr(k)(ie;/”)v”(k’)

* Averaging over initial spins (and summing over final spins) using Completeneess
relations, e.qg. Z w(p)u(p) =y'p,+m,=p+m,

S 4
— Y = 424 (5 — mr*(p + m)y el (K + m )y, (K — m)y,]

|
Trace technology and high-energy limit £, > m,: 2 Z | A \2 = ¢*(1 + cos” )
SpIns
do a’

= (1 + cos” 0)
dQQ 4E.

. Plugging this back into Fermi’s Golden Rule gives
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eTe” — Ly — ,u+,u_ Amplitude
* |n the Standard Model, the W and Z bosons and the photon, are produced

through the spontaneous symmetry breaking of the electroweak symmetry:
Y cos Oy, sin 0Oy, B

A —sin@y, cosby, ) \W3)’

\/gz + grz

e The Z boson Couples differently to left-handed and right-handed fermions:

= ——— “( )
Lz == 5o 20 V= w2,
cos Oy

variable symbol value fermions Qf Vf Af

conversion factor GeV~2 — pb 3.894 x 10® pb per GeV 2
u, ¢, t 42 (+1 — 2sin? Oyy) +1
Z boson mass M, 91.188 GeV » 3 2 3 w 2
Z boson width Ty 2.4414 GeV d.s, b _% (_% _ % sin? @y ) _%

ED j § SRR

QED running coupling o 135 507 Ve, Uy, U 0 1 _|_l
: H 2 2
Fermi constant Gy 1.16639 x 107 GeV 2. . , )
Weinberg angle sin® Oy 0.222246 € Ky T —1 (_§ + 2sin HW) 2
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e"e” — Z/ly —» u"u~ Cross Section
 The differential cross section Is:

dG(A ) @ Ay(S)(1 + cos*0) + A,(8)cos 0]
—5, COS = — \) COS S )COS
dQ 45 U0 !

» where the functions A, and A, are:
Ao = 07 =20,V,V, 1i(8) + (A + VDA + V) 1,(5)

A = —4QA A, 1(5) +8A VAV, 1(3)

* And the functions g(l and y, are:
1) = k8(8 — M2)/((§ — M2)* + ToM?2)

1 (8) = kK°821((§ — M2)* + T2M53)
x =/ 2GpM2/(4na)
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e"e” — Z/ly - uu~ Cross Section
o Effect of the Z boson
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