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PHYS 142/242
Lecture 20: Particle Physics & VEGAS (Part 3)
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Course Evaluations!
• Sudent Evaluations of Teaching (SET) for Winter 2025 will be available to 

students from:


• Monday, March 3 to Saturday, March 15 at 8:00 AM.


• Students must complete their evaluations BEFORE 8AM on Saturday, 
March 15 at 8:00 AM. No exceptions. 

• Students will access their SETs from the Evaluations site. Students will 
receive an email directing them where to access their evaluations. They will 
also receive an email confirmation for each SET they complete.


• If we reach above 80% submitted evaluations, extra credit on final projects!



1. Label incoming/outgoing 4-momentum  and  
internal 4-momenta  


2. Vertex factors: For each vertex, write 


3. Propagators: For each internal line, write 


4. Conservation of energy & momentum: For each vertex, write 



5. Integrate over internal momentum: For each internal line, write 


6. Cancel the delta function  and multiply by  to get 

p1, p2, …, pn
q1, q2, …

−ig
i

q2
j − m2

j

(2π)4δ4(k1 + k2 + k3)
1

(2π)4
d4qj

(2π)4δ4(p1 + p2 + … + pn) i ℳ

Feynman rules for ABC toy theory
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Assuming massless particles and CM frame,  
 




ℳ = ℳ1 + ℳ2

ℳ1 = ∫ i(−ig)2 i
q2

× (2π)4δ4(p1 − q − p3)

× (2π)4δ4(p2 + q − p4)
1

(2π)4
d4q

=
g2

(p1 − p3)2
=

g2

−2p1 ⋅ p3
=

g2

−2p2(1 − cos θ)

ℳ2 =
g2

(p1 − p4)2
=

g2

−2p1 ⋅ p4
=

g2

−2p2(1 + cos θ)

Scattering: A + A → B + B
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ℳ1

ℳ2



Scattering: A + A → B + B
Matrix element is 
 




Differential cross section is 
 




To get the total cross section, we would integrate this


ℳ = −
g2

p2(1 − cos2 θ)
= −

g2

p2 sin2 θ

dσ
dΩ

= ( 1
8π )

2 S |ℳ |2

(E1 + E2)2

|pf |

|pi |
=

1
2 ( g2

16πEp2 sin2 θ )
2

σ = ∫ dΩ
dσ
dΩ

= ∫ dθdϕ sin θ
dσ
dΩ
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Monte Carlo integration
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Basis of all Monte Carlo integration is the simple observation: the value of an 
integral can be recast as the average of the integrand:





So, if we take  values of  distributed uniformly in , then the average 
of  will be a good estimator


I = ∫
x2

x1

f(x)dx = (x2 − x1)⟨ f(x)⟩

N x (x1, x2)
f(x)

I ≈ IN = (x2 − x1)
1
N

N

∑
i=1

f(xi)



Monte Carlo uncertainty
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Introducing the weight ,





and





Then  and 

Wi = (x2 − x1)f(xi)

IN ≡
1
N

N

∑
i=1

Wi

VN ≡ σ2 =
1
N

N

∑
i=1

W2
i − ( 1

N

N

∑
i=1

Wi)
2

σMC = VN /N = σ/ N I ≈ IN ± VN

N



Convergence in  dimensionsd
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In  dimensions, 


• MC integration still converges 


• Trapezoidal rule converges 


• Simpson’s rule converges 


Particle physics: many dimensions


d

∝ 1/ N

∝ 1/N2/d

∝ 1/N4/d

σ =
1

2ECM ∫ f(x1)f(x2) |ℳ |2 dx1dx2d3p1d3p2⋯d3pnδ4(P − p1 − p2 − ⋯ − pn)



MC advantages and disadvantages
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Disadvantages of MC


• Slow convergence in few dimensions


Advantages of MC


• Fast convergence in many dimensions


• Arbitrarily complex integration regions (finite discontinuities not a problem)


• Few points needed to get first estimate (“feasibility limit”)


• Every additional point improves accuracy (“growth rate”)


• Easy error estimate



MC for event generators

10

Up to here, only considered MC as a numerical integration method


If function being integrated is a probability density (positive definite), can 
convert it to a simulation of physical process = an event generator


Simple example: 


Weighted events: generate events  with weights 


Unweighted events: generate events  by keeping them with probability 
 and giving them all weight  calculated over all 

generated events (not just accepted ones)

σ = ∫
1

0

dσ
dx

dx

x dσ/dx

x
(dσ/dx)/(dσ/dx)max ⟨dσ/dx⟩

Example 1:
f(x) = 2x, 0 < x < 1, =⇒ F(x) = x2

F(x) − F(0) = R (F(1) − F(0)) =⇒ x2 = R =⇒ x =
√

R

Example 2:
f(x) = e−x, x > 0, F(x) = 1 − e−x

1 − e−x = R =⇒ e−x = 1 − R = R =⇒ x = − lnR

Method 2: Hit-and-miss
If f(x) ≤ fmax in xmin < x < xmax

use interpretation as an area
1) select x = xmin + R (xmax − xmin)

2) select y = R fmax (new R!)
3) while y > f(x) cycle to 1) x

y

xmin xmaxx
0

fmax

y1

y2

f(x)

accepted

rejected

Integral as by-product:

I =
∫ xmax

xmin

f(x) dx = fmax (xmax − xmin)
Nacc

Ntry
= Atot

Nacc

Ntry

Binomial distribution with p = Nacc/Ntry and q = Nfail/Ntry, so error

δI

I
=

Atot

√

p q/Ntry

Atot p
=

√

q

p Ntry
=

√

q

Nacc
−→

1√
Nacc

for p & 1



Importance sampling
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To improve slow convergence, can use importance sampling: sample more 
often when probability is high and less often when probability is low


Consider integral in one dimension ; We want to get the best 

estimate given  integrand evaluations (total samples)


If we have PDF  where  and 


Optimal variance when 


I = ∫
1

0
f(x)dx

M

p(x) p(x) > 0 ∫
1

0
p(x)dx = 1

p(x) =
| f(x) |

∫ 1
0

| f(x) |dx

Method 3: Improved hit-and-miss (importance sampling)
If f(x) ≤ g(x) in xmin < x < xmax

and G(x) =
∫

g(x′) dx′ is simple
and G−1(y) is simple
1) select x according to g(x) distribution
2) select y = R g(x) (new R!)
3) while y > f(x) cycle to 1)

x

y

xmin xmaxx
0

y1

y2

f(x)

accepted

rejected

g(x)

Example 3:
f(x) = x e−x, x > 0
Attempt 1: F(x) = 1 − (1 + x) e−x not invertible
Attempt 2: f(x) ≤ f(1) = e−1 but 0 < x < ∞
Attempt 3: g(x) = N e−x/2

f(x)

g(x)
=

x e−x

N e−x/2
=

x e−x/2

N
≤ 1

for rejection to work, so find maximum:

d

dx

(

f(x)

g(x)

)

=
1

N

(

1 −
x

2

)

e−x/2 = 0 =⇒ x = 2

Normalize so g(2) = f(2) =⇒ N = 2/e



VEGAS
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Exploratory phase:


• subdivide integration space into rectangular grid


• perform integration in each subspace


• adjust grid according to dominant contributions


• integrate again, approximate optimal


Evaluation phase:


• integrate with high precision and optimized 
frozen grid or efficiently generate events using 
optimized frozen grid
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Vegas algorithm 

Exploratory phase:
• subdivide integration space into rectangular grid
• perform integration in each subspace
• adjust grid according to dominant contributions
• integrate again, approximate optimal

Evaluation phase:
• integrate with high precision and optimized frozen grid
      or efficiently generate events using optimized frozen grid



VEGAS algorithm (1)
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VEGAS algorithm begins by approximating  as a step function with  
steps, starting with uniform probability for all steps: , 







where 





Each interval gets approximately the same number of samples . 
For each iteration, we adjust the intervals 

p(x) N
0 = x0 < ⋯ < xN = 1

Δxi = xi − xi−1

p(x) =
1

NΔxi
, xi − Δxi ≤ x < xi, i = 1,…, N

N

∑
i=1

Δxi = 1

ni ≈ M/N
{xi, Δxi}

Variable transformation

A. Augusto Alves Jr. GOOFIT November 23, 2015 7 / 12



VEGAS algorithm (2)
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Consider the contribution to the integral of the function in a given interval





Define  where typically 


Divide each interval  into  subintervals


Since the total number of subintervals is now , the subintervals are 
combined into  groups, which define the new set of intervals


Optimal to combine them so that  are approximately equal across all 

f̄i = ∑
x∈[xi−Δxi,xi]

| f(x) |

mi = int K
f̄iΔxi

∑j f̄jΔxj
K ≈ 1000

Δxi mi + 1

≫ N
N

f̄i N



VEGAS algorithm (3)
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To avoid rapid, destabilizing changes in the grid, it is better to damp the 
subdivisions using





 typically set between 0.2 and 2

mi = int K

f̄iΔxi

∑j f̄jΔxj
− 1

log ( f̄iΔxi

∑j f̄jΔxj )

α

α



VEGAS error analysis
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To obtain a cumulative estimate of the integral and its standard error from 
each iteration 








Also good sanity check is that 

j

Ī =
∑j Ij/σ2

j

∑j 1/σ2
j

σĪ = ∑
j

1
σ2

j

−1/2

χ2 = ∑
j

(Ij − Ī)2

σ2
j

≈ Niter − 1



VEGAS higher dimensions
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Easy to generalize, but assumption is  can be reasonably approximated by 
separable  (often true in particle physics, but not always)

f(x, y)
px(x)py(y)
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Implementation Details of Vegas algorithm 2-d

1 1 1 1

0 0 0 0

0 1 1

0 1

( , )( , ) ( ) ( )
( ) ( )

0 1
0 1

−

= =

− = < < ⋅⋅⋅ < = ∆ = −
− = < < ⋅⋅⋅ < = ∆ =

∫ ∫ ∫ ∫In 2-d we write 

Divide axis into  equal segments   ,  
Divide axis into  equal segments   ,  

x y
x y

N i i i

N i

f x yt dx dy f x y dx x dy y
x y

x N x x x x x x
y N y y y y

ρ ρ
ρ ρ

1

12 2
2

2
0 1 0

1( )

1( )

( , ) 1 ( , )( )
( ) ( )

−

−∆ ≤ < < < −∆

−

= −∆ ≤ <
∆

= −∆ ≤ <
∆

−

= ∝
∆∑ ∑ ∫ ∫

 for ,  i=1,2,...,

  for  ,  i=1,2,...,

1-d algorithm applied along axis with

1

i

i i i i

i i

x i i i
i

y i i i
i

x

i
x x x x y y i yx x

y y

x x x x x N
N x

y y y y y N
N y

x

f x y f x yf dx dy
y x y

ρ

ρ

ρ ρ

12 2
2

2
0 1 0

( , ) 1 ( , )( )
( ) ( )−∆ ≤ < < < −∆

−

= ∝
∆∑ ∑ ∫ ∫

-d algorithm applied along y axis with
i

i i i i

y

i
y y y y x x i xy y

f x y f x yf dy dx
x y xρ ρ



2D VEGAS grid

18

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

Figure 1: VEGAS map for the D = 4 integral defined in Eqs. (26) and Eq. (27). The figure shows grid lines for every 50th increment along the x1

and x2 axes; grids for the x3 and x4 axes are the same as for x2.

where x(y) is the D-dimensional VEGAS map and J(y) its Jacobian. A Simple Monte Carlo estimate of this integral is
obtained by sampling the integrand at random points y = {yµ} distributed uniformly within the unit hypercube at the
origin:

0 < yµ < 1. (24)

The integrand samples are also used to calculate the averages

dµi ⌘
1
nµi

X

xµ(yµ)2�xµi

J2(y) f 2(x) (25)

for every interval on every integration axis. These are used to improve the grid for each variable after each iteration,
following the procedure described in Section 2.3.

Fig. 1 shows the grid corresponding to a VEGAS map optimized for the D = 4 dimensional integral

1Z

0

d4x
⇣
e�100(x�r1)2

+ e�100(x�r2)2⌘
, (26)

where vector x = (x1, x2, x3, x4), and

r1 = (0.33, 0.5, 0.5, 0.5)
r2 = (0.67, 0.5, 0.5, 0.5). (27)

The grid concentrates increments near 0.33 and 0.67 for x1, and near 0.5 in the other directions. Each rectangle in the
figure receives, on average, the same number of Monte Carlo integration samples.

This VEGAS map has Ng = 1000 increments along each axis. The accuracy of the y-space integrals is typically
insensitive to Ng so long as it is large enough. With Nev = 104 integrand evaluations, the accuracy improves from 11%
with Ng = 1 (i.e., no VEGAS map) to 0.3% at Ng = 100 and flattens out at 0.1% around Ng = 700.

The VEGAS map is particularly effective for integrals like that in Eq. (26), because the integral over each Gaussian
can be separated into a product of one-dimensional integrals over each direction. It also works well, however, for
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Ingredients: amplitude ( ) for the process and the phase space ( ) available


For a two-to-two scattering process ( ), cross section is given by 




 accounts for double-counting with identical particles


Each outgoing particle lies on its mass shell


Each outgoing energy is positive


Energy and momentum must be conserved


Although we can’t fully calculate  without knowing the form of , we can calculate the differential cross 
section: 

ℳ Ω

1 + 2 → 3 + 4
σ =

S

4 (p1 ⋅ p2)2 − (m1m2)2 ∫ |ℳ |2 (2π)4δ4(p1 + p2 − p3 − p4)

×
4

∏
j=3

2πδ(p2
j − m2

j )θ(p0
j )

d4pj

(2π)4

S

σ ℳ

dσ
dΩ

= ( 1
8π )

2 S |ℳ |2

(E1 + E2)2

| pf |

| pi |

6 49. Kinematics

49.4.5 Multibody decays
The above results may be generalized to final states containing any number of particles by

combining some of the particles into “e�ective particles” and treating the final states as 2 or 3
“e�ective particle” states. Thus, if pijk... = pi + pj + pk + . . ., then

mijk... =
Ò

p2
ijk... , (49.26)

and mijk... may be used in place of e.g., m12 in the relations in Sec. 49.4.3 or Sec. 49.4.4 above.

49.5 Cross sections

p3, m3

p
n+2, m

n+2

.�

.�

.

p1, m1

p2, m2

Figure 49.5: Definitions of variables for production of an n-body final state.

The di�erential cross section is given by

d‡ = (2fi)4|M |2

4
Ò

(p1 · p2)2 ≠ m2
1m2

2

◊ d�n(p1 + p2; p3, . . . , pn+2) . (49.27)

[See Eq. (49.12).] In the rest frame of m2(lab),

Ò
(p1 · p2)2 ≠ m2

1m2
2 = m2p1 lab; (49.28a)

while in the center-of-mass frame

Ò
(p1 · p2)2 ≠ m2

1m2
2 = p1cm

Ô
s . (49.28b)

49.5.1 Two-body reactions

p1, m1

p2, m2

p3, m3

p4, m4

Figure 49.6: Definitions of variables for a two-body final state.

Two particles of momenta p1 and p2 and masses m1 and m2 scatter to particles of momenta p3 and

11th August, 2022
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Fermi’s Golden Rule (for scattering)



 in Quantum Electrodynamics (QED)e+e− → γ → μ+μ−4 Chapter 1 Invitation: Pair Production in e+ e Annihilation

e e,+

Figure 1.1. The annihilation reaction e+ e fi^(i , shown in the center-
of-mass frame.

T he Sim plest S ituation

Since most particle physics experiments involve scattering, the most com-
monly calculated quantities in quantum field theory are scattering cross sec-
tions. We will now calculate the cross section for the simplest of all QED 
processes: the annihilation of an electron with its antiparticle, a positron, to 
form a pair of heavier leptons (such as muons). The existence of antiparticles 
is actually a prediction of quantum field theory, as we will discuss in Chapters
2 and 3. For the moment, though, we take their existence as given.

An experiment to measure this annihilation probability would proceed by 
firing a beam of electrons at a beam of positrons. The measurable quantity is 
the cross section for the reaction e+ e~ —► as a function of the center-of-
mass energy and the relative angle 0 between the incoming electrons and the 
outgoing muons. The process is illustrated in Fig. 1.1. For simplicity, we work 
in the center-of-mass (CM) frame where the momenta satisfy p' =  —p and 
k7 =  —k. We also assume that the beam energy E  is much greater than either 
the electron or the muon mass, so that |p| =  |p'| =  |k| =  |k'| =  E  = E cm/ 2. 
(We use boldface type to denote 3-vectors and ordinary italic type to denote 
4-vectors.)

Since both the electron and the muon have spin 1 / 2 , we must specify their 
spin orientations. It is useful to take the axis that defines the spin quantization 
of each particle to be in the direction of its motion; each particle can then 
have its spin polarized parallel or antiparallel to this axis. In practice, electron 
and positron beams are often unpolarized, and muon detectors are normally 
blind to the muon polarization. Hence we should average the cross section 
over electron and positron spin orientations, and sum the cross section over 
muon spin orientations.

For any given set of spin orientations, it is conventional to write the 
differential cross section for our process, with the fi~ produced into a solid 
angle dQ, as

da
dQ,

( l . i)

• Last time, we wrote down the general differential cross section for 2-to-2 
scattering


• Simplify it in the high-energy limit :     


• How do we calculate  in QED?

Ecm ≫ mμ
dσ
dΩ

=
1

64π2E2
cm

|ℳ |2

ℳ

6 Chapter 1 Invitation: Pair Production in e+ e Annihilation

Figure 1.2. Feynman diagram for the lowest-order term in the e+ e~ —► 
cross section. At this order the only possible intermediate state is a 

photon (7 ).

where Hi  is the “interaction” part of the Hamiltonian. In our case the initial 
state is |e+e~) and the final state is But our interaction Hamiltonian
couples electrons to muons only through the electromagnetic field (that is, 
photons), not directly. So the first-order result (1 .2 ) vanishes, and we must go 
to the second-order expression

M  ~  ( m V I H j  |7 >m (7 | H !  |e+ e - ) M . (1.3)

This is a heuristic way of writing the contribution to M. from the diagram in 
Fig. 1.2. The external electron lines correspond to the factor |e+e- ); the ex-
ternal muon lines correspond to (/i+ /i- |. The vertices correspond to H j , and 
the internal photon line corresponds to the operator I7 ) (7 ]. We have added 
vector indices (/1 ) because the photon is a vector particle with four compo-
nents. There are four possible intermediate states, one for each component, 
and according to the rules of perturbation theory we must sum over interme-
diate states. Note that since the sum in (1.3) takes the form of a 4-vector dot 
product, the amplitude A4 will be a Lorentz-invariant scalar as long as each 
half of (1.3) is a 4-vector.

Let us try to guess the form of the vector (7 I Hj  |e+ e- }^. Since Hj  cou-
ples electrons to photons with a strength e (the electron charge), the matrix 
element should be proportional to e. Now consider one particular set of initial 
and final spin orientations, shown in Fig. 1.3. The electron and muon have 
spins parallel to their directions of motion; they are “right-handed” . The an-
tiparticles, similarly, are “left-handed” . The electron and positron spins add 
up to one unit of angular momentum in the -j-z direction. Since Hj  should 
conserve angular momentum, the photon to which these particles couple must 
have the correct polarization vector to give it this same angular momentum:
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Feynman Rules for QED
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 Amplitudee+e− → γ → μ+μ−
6 Chapter 1 Invitation: Pair Production in e+ e Annihilation

Figure 1.2. Feynman diagram for the lowest-order term in the e+ e~ —► 
cross section. At this order the only possible intermediate state is a 

photon (7 ).

where Hi  is the “interaction” part of the Hamiltonian. In our case the initial 
state is |e+e~) and the final state is But our interaction Hamiltonian
couples electrons to muons only through the electromagnetic field (that is, 
photons), not directly. So the first-order result (1 .2 ) vanishes, and we must go 
to the second-order expression

M  ~  ( m V I H j  |7 >m (7 | H !  |e+ e - ) M . (1.3)

This is a heuristic way of writing the contribution to M. from the diagram in 
Fig. 1.2. The external electron lines correspond to the factor |e+e- ); the ex-
ternal muon lines correspond to (/i+ /i- |. The vertices correspond to H j , and 
the internal photon line corresponds to the operator I7 ) (7 ]. We have added 
vector indices (/1 ) because the photon is a vector particle with four compo-
nents. There are four possible intermediate states, one for each component, 
and according to the rules of perturbation theory we must sum over interme-
diate states. Note that since the sum in (1.3) takes the form of a 4-vector dot 
product, the amplitude A4 will be a Lorentz-invariant scalar as long as each 
half of (1.3) is a 4-vector.

Let us try to guess the form of the vector (7 I Hj  |e+ e- }^. Since Hj  cou-
ples electrons to photons with a strength e (the electron charge), the matrix 
element should be proportional to e. Now consider one particular set of initial 
and final spin orientations, shown in Fig. 1.3. The electron and muon have 
spins parallel to their directions of motion; they are “right-handed” . The an-
tiparticles, similarly, are “left-handed” . The electron and positron spins add 
up to one unit of angular momentum in the -j-z direction. Since Hj  should 
conserve angular momentum, the photon to which these particles couple must 
have the correct polarization vector to give it this same angular momentum:

• Given a specific set of spins 




• Averaging over initial spins (and summing over final spins) using completeness 
relations, e.g.  




• Trace technology and high-energy limit : 


• Plugging this back into Fermi’s Golden Rule gives 

−iℳ = v̄s′￼(p′￼)(ieγμ)us(p)(
−igμν

q2 ) ūr(k)(ieγν)vr′￼(k′￼)

∑
s

us(p)ūs(p) = γμpμ + me = p + me

1
4 ∑

spins

|ℳ |2 =
e4

4q4
tr[(p′￼− me)γμ(p + me)γν]tr[(k + mμ)γμ(k′￼− mμ)γν]

Ecm ≫ mμ
1
4 ∑

spins

|ℳ |2 = e4(1 + cos2 θ)

dσ
dΩ

=
α2

4Ecm
(1 + cos2 θ)
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 Amplitudee+e− → Z/γ → μ+μ−

• In the Standard Model, the W and Z bosons and the photon, are produced 
through the spontaneous symmetry breaking of the electroweak symmetry:




• The Z boson couples differently to left-handed and right-handed fermions: 

( γ
Z0) = ( cos θW sin θW

−sin θW cos θW) ( B
W3),

ℒffZ = −
g

2 cos θW ∑
f

ψ̄fγμ(Vf − Afγ5)ψf Zμ

3.1.2 e
+
e
�

! Z/� ! µ
+
µ
�

The differential cross section for electroweak production of µ+
µ
� at a lepton collider pro-

ceeds in much the same way as the one in QED. The main difference arises from the fact
that the Z boson couples with different strengths to left- and right-handed fermions [20].
Table 1 shows the couplings of fermions to the Z boson, in the form:

LffZ = �
gW

2 cos ✓W

X

f

 ̄f�
µ(Vf � Af�5) fZµ , (3.10)

where gW is the SU(2) coupling constant in the standard model, cos ✓W is the cosine of the
Weinberg angle, numerical values of which are found in Appendix A,  f represents fermion
f and Zµ is the Z boson field strength. The difference is manifested in the resulting outgoing

fermions Qf Vf Af

u, c, t +2
3 (+1

2 �
4
3 sin

2
✓W ) +1

2

d,s, b �
1
3 (�1

2 �
2
3 sin

2
✓W ) �

1
2

⌫e, ⌫µ, ⌫⌧ 0 1
2 +1

2

e, µ, ⌧ �1 (�1
2 + 2 sin2 ✓W ) �

1
2

Table 1: Couplings of fermions to the Z boson, taken from Ref. [21].

lepton distributions as an asymmetry between the forward and backward directions. While
Eq. 3.9 contains only constant terms and terms proportional to the square of the cosine of
the scattering angle, the inclusion of the Z boson induces a term linear in cos ✓:

d�

d⌦
=
↵
2

4ŝ

⇥
A0(1 + cos2 ✓) +A1 cos ✓

⇤
, (3.11)

where A0 and A1 are given by:

A0 = Q
2
f � 2QfVµVf �1 + (A2

µ + V
2
µ )(A

2
f + V

2
f ) �2 ,

A1 = �4QfAµAf �1 + 8AµVµAfVf �2 , (3.12)

where in turn, the functions �1 and �2 are given by:

�1(ŝ) = ŝ(ŝ � M
2
Z)/((ŝ � M

2
Z)

2 + �2
ZM

2
Z) ,

�2(ŝ) = 
2
ŝ
2
/((ŝ � M

2
Z)

2 + �2
ZM

2
Z) ,

 =
p
2GfM

2
Z/(4⇡↵) . (3.13)

A good test to check whether the Monte Carlo integration is working is to check whether
the Monte Carlo cross section agrees with the analytic result:

� =
4⇡↵2

3ŝ
A0 , (3.14)

where it is evident that the cos ✓ term has dropped out due to its asymmetry.
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variable symbol value

conversion factor GeV�2
! pb 3.894 ⇥ 108 pb per GeV�2

Z boson mass MZ 91.188 GeV

Z boson width �Z 2.4414 GeV

QED running coupling ↵
1

132.507

Fermi constant Gf 1.16639 ⇥ 10�5 GeV�2.

Weinberg angle sin2 ✓W 0.222246

Table 2: Constants used throughout this article, given to provide agreement with
MadGraph.

## import LHAPDF and initialise PDFs
import lhapdf
## initialises PDF member object (for protons)
p = lhapdf.mkPDF("cteq6l1", 0)

and the PDF should be called as:

p.xfxQ(FLAVOUR, x1, mu)

where FLAVOUR should be replaced by the quark flavours contributing to the process: 1 for
down-quarks, 2 for up, 3 for strange, 4 for charm and negative values for the corresponding
anti-quarks. The gluon, not used here, is given by 21. Note that this actually gives x⇥f(x)

and thus one has to divide by the momentum fraction to get f(x). Moreover, this specific
function takes as input the scale and not the scale squared.

C The Les Houches event file format

The file header and the first event in a Les Houches-accord event file have the following
form:
<LesHouchesEvents version="1.0">

<header>

...

</header>

<init>

2212 2212 0.40000000000E+04 0.40000000000E+04 0 0 10042 10042 2 1

0.88184317905E+03 0.10037036184E+01 0.86172440000E-01 0

</init>

<event>

5 0 0.4467596E-01 0.9118800E+02 0.7546771E-02 0.1300000E+00

-2 -1 0 0 0 501 0.00000000000E+00 0.00000000000E+00 0.10230021267E+01 0.10230021267E+01 0.00000000000E+00 0. 1.

2 -1 0 0 501 0 0.00000000000E+00 0.00000000000E+00 -0.21100317982E+04 0.21100317982E+04 0.00000000000E+00 0. -1.

23 2 1 2 0 0 0.00000000000E+00 0.00000000000E+00 -0.21090087961E+04 0.21110548003E+04 0.92920762309E+02 0. 0.

-11 1 3 3 0 0 0.42119725672E+01 -0.21951919980E+02 -0.12916294295E+03 0.13108277284E+03 0.00000000000E+00 0. 1.

11 1 3 3 0 0 -0.42119725672E+01 0.21951919980E+02 -0.19798458531E+04 0.19799720275E+04 0.00000000000E+00 0. -1.

</event>

...
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 Cross Sectione+e− → Z/γ → μ+μ−

• The differential cross section is: 




• where the functions  and  are: 




• And the functions  and  are:        

dσ
dΩ

( ̂s, cos θ) =
α2

4 ̂s [A0( ̂s)(1 + cos2 θ) + A1( ̂s)cos θ]
A0 A1

A0( ̂s) = Q2
e − 2QeVμVe χ1( ̂s) + (A2

μ + V2
μ)(A2

e + V2
e ) χ2( ̂s)

A1( ̂s) = − 4Qf AμAe χ1( ̂s) + 8AμVμAeVe χ2( ̂s)

χ1 χ2
χ1( ̂s) = κ ̂s( ̂s − M2

Z)/(( ̂s − M2
Z)2 + Γ2

ZM2
Z)

χ2( ̂s) = κ2 ̂s2/(( ̂s − M2
Z)2 + Γ2

ZM2
Z)

κ = 2GFM2
Z /(4πα)
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• Effect of the Z boson
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ECM_200 .0 tag_1 2.98247 0.0059477821791 1000

Using these values we can compare with the result of CalcHEP. This is shown in Fig. 1,
showing a perfect agreement.
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Figure 1: Cross section for e+e� ! µ+µ� in QED (blue) and the SM (red) calculated
with CalcHEP. The result of MadGraph are the magenta crosses.

The reader should read the manual as well as a variety of online presentations to be
able to understand the full power of MadGraph.
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