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Course Evaluations!
• https://academicaffairs.ucsd.edu/Modules/Evals?e11230304


• Available until Wednesday, March 27 at 8:00 AM 

• If we reach above 80% submitted evaluations, extra credit on final projects

https://academicaffairs.ucsd.edu/Modules/Evals?e11230304


Final Presentations
• 1 person per group fill out the form ASAP: https://forms.gle/

RVSJ2RNAoAL83n286


• Discuss amongst yourselves then fill it out by Friday lecture


• Limited to 15+5 minutes


• Example presentations from previous years: https://docs.google.com/
presentation/d/1jkIBqTkAAXtWCO88Lm4ulzRwCAi8nwUU/edit?
usp=sharing&ouid=117156458781940750638&rtpof=true&sd=true


• Presentations will take place Tuesday - Friday in Lab/Lecture


• All groups are expected to be present to give feedback via form: https://
forms.gle/9w36yFgoB8PqwZPE9

https://forms.gle/RVSJ2RNAoAL83n286
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Final Presentations Schedule

Tuesday Lab Wednesday Lecture Thursday Lab Friday Lecture

Double Well Potential 
with MCMC (B)

Double Well Potential 
with MCMC (A)

Drell-Yan Production 
with VEGAS (C)

2D Ising Model with 
MCMC (B)

Drell-Yan Production 
with VEGAS (A)

Drell-Yan Production 
with VEGAS (B)

2D Ising Model with 
MCMC (C)

Drell-Yan Production 
with VEGAS (D)

2D Ising Model with 
MCMC (A)

Double Well Potential 
with MCMC (C)



Final Report
• Template: https://www.overleaf.com/

read/drwctbrvmzfs#705aa6


• Due Friday of Finals Week

Manuscript Title: Subtitle

Ann Author
⇤
and Second Author

†

University of California San Diego

(Group: Double Well Potential with MCMC (A))

(Dated: March 6, 2024)

An article usually includes an abstract, a concise summary of the work covered at length in the

main body of the article.

I. INTRODUCTION

Introduce the problem you are solving. Discuss the

physics behind the project and introduce the computa-

tional methods you will use. Also, mention and cite any

papers you use [1].

Describe the main objective of your project.

II. METHODS

Describe methods, e.g. Markov chain Monte Carlo

with Metropolis-Hastings algorithm. Here’s an example

of an equation for the path integral

K(xb, tb;xa, ta) =

Z
Dx(t) exp


i

~

Z tb

ta

L(x(t))dt

�
(1)

Make sure you define all variables in any equations you

write!

Describe and discuss any parameters you choose for

your computational method, e.g. burn-in steps, etc.

Provide the link to your software in GitHub reposi-

tory [2].

III. RESULTS

Report the results of your simulations. Add figures

showing your results, as in Fig. 1.

Discuss significance of results. In particular answer

questions posed in the assignment, e.g. explain the con-

nection to statistical mechanics.

IV. CONCLUSION

Brief summary of the project and results. Describe any

lessons learned or possible future work.

V. CONTRIBUTIONS

Briefly describe contributions from each team member.

FIG. 1. Describe your figure in full.
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Self & Peer Evaluations
• Form: https://forms.gle/

P9C7E9jYrmn4hEHZ7


• Due Friday of Finals Week

https://forms.gle/P9C7E9jYrmn4hEHZ7
https://forms.gle/P9C7E9jYrmn4hEHZ7
https://forms.gle/P9C7E9jYrmn4hEHZ7


PHYS 143/243: Machine Learning in Physics 
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• Study of machine learning methods applied to physics

• Currently offered as a 139/239 Special Topics

• Overview:


• Supervised learning

• (Boosted) decision trees — tabular data

• (Deep) neural networks — tabular data

• Convolutional neural networks — image-like data

• Graph neural networks — graph-like data and point clouds

• Unsupervised learning

• (Variational) autoencoders for anomaly detection

• Model compression

• Special topics via guest lectures (TBD)


• Equivariant models

• Generative models

• Reinforcement learning

• Explainability

• Uncertainty


• Final team projects



What is machine learning?
• Science and art of learning automatically from data and experience 
 
 
 
 
 
 
 
 
 
 

• Large overlap with data mining:

• ML focuses on algorithms,  

DM on discovering patterns

8

Also, a lot of calculus, linear 
algebra, statistics, group theory, …



Supervised learning
• Learn a function  from an input space  (observations) to an output 

space Y (targets), using a set of labeled examples .


• Example 1: Predict stellar radius given stellar mass

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

9

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2



Supervised learning
• Learn a function  from an input space  (observations) to an output 

space Y (targets), using a set of labeled examples .


• Example 2: Classify images of  
neutrino interactions

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)
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Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

arXiv:1604.01444

https://arxiv.org/abs/1604.01444


Supervised learning
• Learn a function  from an input space  (observations) to an output 

space Y (targets), using a set of labeled examples .


• Example 3: Reduce noise in a time-series trace to identify a gravitational wave 
signal

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)
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FIG. 1. Sample signal injected into real LIGO noise.
The red time-series is an example of the input to our Deep
Filtering algorithm. It contains a hidden BBH GW signal
(blue) from our test set which was superimposed in real LIGO
noise from the test set and whitened. For this injection, the opti-
mal matched-filter SNR = 7.5 (peak power of this signal is 0.65
times the power of background noise). The component masses
of the merging BHs are 57MØ and 33MØ. The presence of
this signal was detected directly from the (red) time-series in-
put with over 99% sensitivity and the source’s parameters were
estimated with a mean relative error less than 10%.

glitches, since it is well known that the PSD of LIGO is
highly non-stationary, varying widely with time. There-
fore, if Deep Filtering performs well on these test
sets, it would also perform well on data from future time
periods, without being re-trained.

Next, we superimposed different realizations of noise
randomly sampled from the training set of real LIGO
noise from the two events GW151226 and LVT151012
and injected signals over multiple iterations, thus am-
plifying the size of the training datasets. The power of
the noise was adjusted according to the desired optimal
matched-filter Signal-to-Noise Ratio (SNR [43]) for each
training round. The inputs were then whitened with the
average PSD of the real noise measured at that time-
period. We also scaled and mixed different samples of
LIGO noise together to artificially produce more training
data and various levels of Gaussian noise was also added
to augment the training process. However, the testing
results were measured using only pure LIGO noise not
used in training with true GW signals or with signals in-
jected from the unaltered test sets (see Fig. 1).

We used similar hyperparameters to our original
CNNs [39] with a slightly deeper architecture. There
were 4 convolution layers with the filter sizes to 64,
128, 256, and 512 respectively and 2 fully connected
layers with sizes 128 and 64. The standard ReLU ac-
tivation function, max(0, x), was used throughout as the
non-linearity between layers. We used kernel sizes of 16,
16, 16, and 32 for the convolutional layers and 4 for all

FIG. 2. Spectrograms of real LIGO noise test samples. We
used signals injected into real data from the LIGO detectors in
this article, ensuring that the training and testing sets did not
contain noise from the same events. These are some random
examples of real glitches that were present in our test set of
LIGO noise. The Deep Filtering method takes the 1D
strain directly as input and is able to correctly classify glitches
as noise and detect true GW signals as well as simulated GW
signals injected into these highly non-stationary non-Gaussian
data streams, with similar sensitivity compared to matched-
filtering.

the (max) pooling layers. Stride was chosen to be 1 for
all the convolution layers and 4 for all the pooling lay-
ers. We observed that using dilations [44] of 1, 2, 2, and
2 in the corresponding convolution layers improved the
performance. The final layout of our predictor CNN is
shown in Fig. 3.

We had originally optimized this CNN architecture to
deal with only Gaussian noise having a flat PSD. How-
ever, we later found that this model also obtained the
best performance with noise having the colored PSD of
LIGO, among all the models we tested. This indicates
that our architecture is robust to a wide range of noise
distributions. Furthermore, pre-training the CNNs on
Gaussian noise (transfer learning) before fine-tuning on
the limited amount of real noise prevented over-fitting,
i.e., memorizing only the training data without generaliz-
ing to new inputs. We used the Wolfram Language neural
network functionality, based on the open-source MXNet
framework [45], that uses the cuDNN library [46] for ac-
celerating the training with NVIDIA GPUs. The learning
algorithm was again set to ADAM [47] and other details
were the same as before [39].

For training, we used the curriculum learning strategy
in our first article [39] to improve the performance and
reduce training times of the CNNs while retaining perfor-
mance at very high SNR. By starting off training inputs
having high SNR (∏ 100) and then gradually increasing
the noise in each subsequent training session until a final

arXiv:1711.03121

https://arxiv.org/abs/1711.03121


Supervised learning
• Learn a function  from an input space  (observations) to an output 

space Y (targets), using a set of labeled examples .


• Example 4: Estimate particle momentum, charge, type, etc. from detector hits

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)
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→

E
px
py
pz

, q, type, ppileup, …

arXiv:2101.08578

https://arxiv.org/abs/2101.08578


Linear models: workhorse of machine learning 
• Linear models on top of good features 

can yield excellent results


• More complex model classes (e.g., 
neural networks) have linear models 
as their basic building block


• NNs are “automatic featurizers”

13

Linear model: f(x |w) = w⊺x

x

w

f(x |w)

Neural network: linear model after 
inputs are mapped to features 

through a nonlinear transformation 
f(x |w1, w2) = w⊺

2σ(w⊺
1x)

w1 w2

x f(x |w1, w2)
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network: sequence of parallelized weighted sums and non-linearities
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Neural 
networks



� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 ( 5 (G)) for all G 2 - and 6 2 ⌧.

Symmetries
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� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 ( 5 (G)) for all G 2 - and 6 2 ⌧.



Translational invariance
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• For the purpose of classifying galaxy  
morphologies (e.g. spiral), the 
answer shouldn’t depend on  
the absolute location of the pixels


• For simplicity, imagine there are 4 
possible locations the galaxy might 
show up (top left, top right, bottom left, 
and bottom right)



Convolutional neural networks

17

What if the same fully-connected 
neural network is applied to each 

corner?



Graph neural networks
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Figure 17: A visualisation of the dataflow for the three flavours of GNN
layers, g. We use the neighbourhood of node b from Figure 10 to illustrate
this. Left-to-right: convolutional, where sender node features aremultiplied
with a constant, cuv; attentional, where this multiplier is implicitly computed
via an attention mechanism of the receiver over the sender: ↵uv = a(xu,xv);
and message-passing, where vector-based messages are computed based
on both the sender and receiver: muv =  (xu,xv).

additional geometric structure.

As per our discussion in Section 4.1, we consider a graph to be specified
with an adjacency matrix A and node features X. We will study GNN
architectures that are permutation equivariant functions F(X,A) constructed
by applying shared permutation invariant functions �(xu,XNu) over local
neighbourhoods. Under various guises, this local function � can be referred
to as “di�usion”, “propagation”, or “message passing”, and the overall
computation of such F as a “GNN layer”.

The design and study of GNN layers is one of the most active areas of deep
learning at the time of writing, making it a landscape that is challenging to
navigate. Fortunately, we find that the vast majority of the literature may be
derived from only three “flavours” of GNN layers (Figure 17), which we will
present here. These flavours govern the extent to which � transforms the
neighbourhood features, allowing for varying degrees of complexity when
modelling interactions across the graph.

In all three flavours, permutation invariance is ensured by aggregating fea-
tures from XNu (potentially transformed, by means of some function  )
with some permutation-invariant function

L
, and then updating the features

of node u, by means of some function �. Typically,Most commonly,  and � are
learnable a�ne

transformations with
activation functions; e.g.

 (x) = Wx+ b;
�(x, z) = � (Wx+Uz+ b),
whereW,U,b are learnable

parameters and � is an
activation function such as

the rectified linear unit. The
additional input of xu to �

represents an optional
skip-connection, which is often

very useful.

 and � are learnable,
whereas

L
is realised as a nonparametric operation such as sum, mean, or

maximum, though it can also be constructed e.g. using recurrent neural
networks (Murphy et al., 2018).

• Convolutional: sender node features are multiplied with a constant


• Attentional: multiplier is implicitly computed via an attention mechanism of the 
receiver over the sender


• Message-passing: vector-based messages are computed based on both the 
sender and receiver
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Figure 17: A visualisation of the dataflow for the three flavours of GNN
layers, g. We use the neighbourhood of node b from Figure 10 to illustrate
this. Left-to-right: convolutional, where sender node features aremultiplied
with a constant, cuv; attentional, where this multiplier is implicitly computed
via an attention mechanism of the receiver over the sender: ↵uv = a(xu,xv);
and message-passing, where vector-based messages are computed based
on both the sender and receiver: muv =  (xu,xv).

additional geometric structure.

As per our discussion in Section 4.1, we consider a graph to be specified
with an adjacency matrix A and node features X. We will study GNN
architectures that are permutation equivariant functions F(X,A) constructed
by applying shared permutation invariant functions �(xu,XNu) over local
neighbourhoods. Under various guises, this local function � can be referred
to as “di�usion”, “propagation”, or “message passing”, and the overall
computation of such F as a “GNN layer”.

The design and study of GNN layers is one of the most active areas of deep
learning at the time of writing, making it a landscape that is challenging to
navigate. Fortunately, we find that the vast majority of the literature may be
derived from only three “flavours” of GNN layers (Figure 17), which we will
present here. These flavours govern the extent to which � transforms the
neighbourhood features, allowing for varying degrees of complexity when
modelling interactions across the graph.

In all three flavours, permutation invariance is ensured by aggregating fea-
tures from XNu (potentially transformed, by means of some function  )
with some permutation-invariant function

L
, and then updating the features

of node u, by means of some function �. Typically,Most commonly,  and � are
learnable a�ne

transformations with
activation functions; e.g.

 (x) = Wx+ b;
�(x, z) = � (Wx+Uz+ b),
whereW,U,b are learnable

parameters and � is an
activation function such as

the rectified linear unit. The
additional input of xu to �

represents an optional
skip-connection, which is often

very useful.

 and � are learnable,
whereas

L
is realised as a nonparametric operation such as sum, mean, or

maximum, though it can also be constructed e.g. using recurrent neural
networks (Murphy et al., 2018).
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layers, g. We use the neighbourhood of node b from Figure 10 to illustrate
this. Left-to-right: convolutional, where sender node features aremultiplied
with a constant, cuv; attentional, where this multiplier is implicitly computed
via an attention mechanism of the receiver over the sender: ↵uv = a(xu,xv);
and message-passing, where vector-based messages are computed based
on both the sender and receiver: muv =  (xu,xv).

additional geometric structure.

As per our discussion in Section 4.1, we consider a graph to be specified
with an adjacency matrix A and node features X. We will study GNN
architectures that are permutation equivariant functions F(X,A) constructed
by applying shared permutation invariant functions �(xu,XNu) over local
neighbourhoods. Under various guises, this local function � can be referred
to as “di�usion”, “propagation”, or “message passing”, and the overall
computation of such F as a “GNN layer”.

The design and study of GNN layers is one of the most active areas of deep
learning at the time of writing, making it a landscape that is challenging to
navigate. Fortunately, we find that the vast majority of the literature may be
derived from only three “flavours” of GNN layers (Figure 17), which we will
present here. These flavours govern the extent to which � transforms the
neighbourhood features, allowing for varying degrees of complexity when
modelling interactions across the graph.

In all three flavours, permutation invariance is ensured by aggregating fea-
tures from XNu (potentially transformed, by means of some function  )
with some permutation-invariant function

L
, and then updating the features

of node u, by means of some function �. Typically,Most commonly,  and � are
learnable a�ne

transformations with
activation functions; e.g.

 (x) = Wx+ b;
�(x, z) = � (Wx+Uz+ b),
whereW,U,b are learnable

parameters and � is an
activation function such as

the rectified linear unit. The
additional input of xu to �

represents an optional
skip-connection, which is often

very useful.

 and � are learnable,
whereas

L
is realised as a nonparametric operation such as sum, mean, or

maximum, though it can also be constructed e.g. using recurrent neural
networks (Murphy et al., 2018).

arXiv:104.13478

https://arxiv.org/abs/2104.13478

