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Course Evaluations!

e https://academicaffairs.ucsd.edu/Modules/Evals?e11230304

* Available until Wednesday, March 27 at 8:00 AM

* |f we reach above 80% submitted evaluations, extra credit on final projects


https://academicaffairs.ucsd.edu/Modules/Evals?e11230304

Final Presentations

1 person per group fill out the form ASAP: https://forms.gle/
RVSJ2RNAOAL83n286

Discuss amongst yourselves then fill it out by Friday lecture
Limited to 15+5 minutes

Example presentations from previous years: https://docs.google.com/
presentation/d/1|kIBQTKAAXIWCO88L.m4ulzRwCAi8nwUU/edit?
usp=sharing&ouid=117156458/81940/50638&rtpof=true&sd=true

Presentations will take place Tuesday - Friday in Lab/Lecture

All groups are expected to be present to give feedback via form: https://
forms.gle/9w36yFgoB8PqwZPE9
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Final Presentations Schedule

Tuesday Lab

Wednesday Lecture

Thursday Lab

Friday Lecture

Double Well Potential
with MCMC (B)

Double Well Potential
with MCMC (A)

Drell-Yan Production
with VEGAS (C)

2D Ising Model with
MCMC (B)

Drell-Yan Production
with VEGAS (A)

Drell-Yan Production
with VEGAS (B)

2D Ising Model with
MCMC (C)

Drell-Yan Production
with VEGAS (D)

2D Ising Model with
MCMC (A)

Double Well Potential
with MCMC (C)




Final Report

 Template: https://www.overleaf.com/
read/drwctbrvmzfs#705aa6

 Due Friday of Finals Week

Manuscript Title: Subtitle

Ann Author* and Second Author'
University of California San Diego

(Group: Double Well Potential with MCMC (A))
(Dated: March 6, 2024)

An article usually includes an abstract, a concise summary of the work covered at length in the

main body of the article.

I. INTRODUCTION

Introduce the problem you are solving. Discuss the
physics behind the project and introduce the computa-
tional methods you will use. Also, mention and cite any
papers you use [1].

Describe the main objective of your project.

II. METHODS

Describe methods, e.g. Markov chain Monte Carlo
with Metropolis-Hastings algorithm. Here’s an example
of an equation for the path integral

ty
tq

K(:cb,tb;xa,ta):/l?x(t)exp [%/ L(:c(t))dt] (1)

Make sure you define all variables in any equations you
write!

Describe and discuss any parameters you choose for
your computational method, e.g. burn-in steps, etc.

Provide the link to your software in GitHub reposi-
tory [2].
III. RESULTS

Report the results of your simulations. Add figures
showing your results, as in Fig. 1.

Discuss significance of results. In particular answer
questions posed in the assignment, e.g. explain the con-
nection to statistical mechanics.

IV. CONCLUSION

Brief summary of the project and results. Describe any
lessons learned or possible future work.

V. CONTRIBUTIONS

Briefly describe contributions from each team member.
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FIG. 1. Describe your figure in full.
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Self & Peer Evaluations

 Form: https://forms.gle/
PO9C7E9])Yrmn4hEHZ7

 Due Friday of Finals Week

Self & Peer Evaluation for PHYS 141
Midterm/Final Group Project

Please assess the work of you and your colleagues by using the following criteria. We will
consider your feedback in assigning the grade for the project. Please try to be as honest
and fair

as possible in your assessment.

5 = Excellent work; was crucial component to group’s success

4 = Very strong work; contributed significantly to group

3 = Sufficient effort; contributed adequately to group

2 = Insufficient effort; met minimal standards of group
1 = Little or weak effort; was detrimental to group

javier.m.g.duarte@gmail.com Switch account I

* Indicates required question
Email *

Your email

UCSD PID *

Your answer
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PHYS 143/243: Machine Learning in Physics

e Study of machine learning methods applied to physics
* Currently offered as a 139/239 Special Topics
* Overview:
e Supervised learning
* (Boosted) decision trees — tabular data
e (Deep) neural networks — tabular data
e Convolutional neural networks — image-like data
 Graph neural networks — graph-like data and point clouds
* Unsupervised learning
» (Variational) autoencoders for anomaly detection
 Model compression
e Special topics via guest lectures (TBD)
* Equivariant models
 Generative models
* Reinforcement learning
* Explainability
* Uncertainty
* Final team projects



What is machine learning?

 Science and art of learning automatically from data and experience

Also, a lot of calculus, linear

algebra, statistics, group theory, ...

THIS 1S YOUR MACHINE LEARNING SYSTETM?

| YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTER SIDE.

l
WHAT IF THE ANSLERS ARE LJRONG? )

JUST STiR THE PILE UNTIL
THEY START LOOKING RIGHT.

» Large overlap with data mining:

ML focuses on algorithms,
DM on discovering patterns




Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥;), (X5, ¥5), - - ., (Xn» Yn)-

 Example 1: Predict stellar radius given stellar mass
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Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥;), (X5, ¥5), - - ., (Xn» Yn)-

 Example 2: Classify images of
neutrino interactions
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arXiv:1604.01444

(ADC)


https://arxiv.org/abs/1604.01444

Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥{), (X5, ¥5), - - ., (Xn» V)

 Example 3: Reduce noise in a time-series trace to identify a gravitational wave
signal A | | _arXiv:1711.03121

Whitened Strain
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https://arxiv.org/abs/1711.03121

Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥;), (X5, ¥5), - - ., (Xn» Yn)-

 Example 4: Estimate particle momentum, charge, type, etc. from detector hits
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https://arxiv.org/abs/2101.08578

Linear models: workhorse of machine learning

Neural network: linear model after

* Linear models on top of good features inputs are mapped to features

can yield excellent results through a nonlinear transformation
Jxlwy,wy) = sza(wlTx)

 More complex model classes (e.g.,
neural networks) have linear models ® \
as their basic building block
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e NNs are “automatic featurizers”
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Linear model: f(x|w) = wlx
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network: sequence of parallelized weighted sums and non-linearities
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Symmetries

Invariance Equivariance
f(pg(x)) = f(x) f(pg(x)) = pg (f(x))

X X

15



Translational invariance

* For the purpose of classifying galaxy
morphologies (e.g. spiral), the
answer shouldn’t depend on
the absolute location of the pixels

* For simplicity, imagine there are 4
possible locations the galaxy might
show up (top left, top right, bottom left,

and bottom right)

16



Convolutional neural networks

What if the same fully-connected
neural network Is applied to each
corner”?




Graph neural networks arXiv:104.13478
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Convolutional Attentional Message-passing

 Convolutional: sender node features are multiplied with a constant

o Attentional: multiplier is implicitly computed via an attention mechanism of the
receiver over the sender

» Message-passing: vector-based messages are computed based on both the
sender and receiver
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https://arxiv.org/abs/2104.13478

