Computational Physics II Quiz 1

Policies

Please work on the quiz individually.

Submission Instructions

Please submit your quiz as a single .pdf file to Gradescope under "Quiz 1".

1 Classical action [20 Points]

Relevant materials: Week 1 lectures

A free electron is moving in one dimension between position $x_A = 0$ at time t_A and position $x_B = 0.15 \times 10^{-8}$ cm at time t_B . The mass of the electron is $m = 0.5 \text{ MeV}/c^2 = 9.1 \times 10^{-28}$ g where $c = 3 \times 10^{10}$ cm/s is the speed of light. The electron is moving with (constant) velocity v = 0.15c.

Problem A [10 points]: Show that the classical action $S = \int_{t_A}^{t_B} Ldt$ for a free particle $(L = \frac{1}{2}m\dot{x}^2)$ is given by

$$S = \frac{m}{2} \frac{(x_B - x_A)^2}{t_B - t_A} = \frac{mv(x_B - x_A)}{2}.$$
 (1)

Evaluate the action *S* in units of MeV s or $cm^2 g/s$.

Problem B [5 points]: Evaluate the action *S* in units of $\hbar = h/(2\pi) = 6.5822 \times 10^{-22} \text{ MeV s} = 1.0546 \times 10^{-27} \text{ cm}^2 \text{ g/s}.$

Problem C [5 points]: Evaluate the action *S* if the electron mass was 1 g and the separation between x_A and x_B was 1 cm. Evaluate *S* again in units of \hbar , like in (B). What is the most striking difference between the two results in (B) and (C) in \hbar units? What does this mean for the classical limit of quantum mechanics, i.e. why do we not need to sum over all paths in classical mechanics?