References#

1

Luke de Oliveira, Michael Kagan, Lester Mackey, Benjamin Nachman, and Ariel Schwartzman. Jet-images — deep learning edition. J. High Energy Phys., 07:069, 2016. arXiv:1511.05190, doi:10.1007/JHEP07(2016)069.

2

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds. 2019. URL: https://pytorch-geometric.readthedocs.io/, arXiv:1903.02428.

3

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. Preprint, 2018. arXiv:1806.01261.

4

Eric A. Moreno, Thong Q. Nguyen, Jean-Roch Vlimant, Olmo Cerri, Harvey B. Newman, Avikar Periwal, Maria Spiropulu, Javier M. Duarte, and Maurizio Pierini. Interaction networks for the identification of boosted $H \rightarrow b\overline b$ decays. Phys. Rev. D, 102:012010, 2020. arXiv:1909.12285, doi:10.1103/PhysRevD.102.012010.

5

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Francis Bach and David Blei, editors, 32nd International Conference on Machine Learning, volume 37, 448. Lille, France, 07 2015. PMLR. URL: http://proceedings.mlr.press/v37/ioffe15.html, arXiv:1502.03167.